Integrating DIA Single-Cell Proteomics Data with the DiagnoMass Proteomic Hub for Biological Insights

被引:0
|
作者
Martins, Aline M. A. [1 ,2 ]
Santos, Marlon D. M. [3 ,4 ]
Camillo-Andrade, Amanda C. [3 ]
Leite, Aline Lima [5 ]
Souza, Janaina Sena [6 ]
Sanchez, Sandra [6 ]
Muotri, Alysson R. [6 ]
Carvalho, Paulo Costa [3 ]
Yates, John R. [1 ,2 ]
机构
[1] Scripps Res Inst, Dept Mol Med, 10550 North Torrey Pines Rd,SR302B, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Neurobiol, La Jolla, CA 92037 USA
[3] Carlos Chagas Inst, Lab Struct & Computat Proteom, Curitiba, PR, Brazil
[4] Inst Pasteur Montevideo, Analyt Biochem & Proteom Unit, Inst Invest Biol Clemente Estable, Montevideo 11400, Uruguay
[5] Bruker Daltonics Corp, Billerica, MA 01821 USA
[6] UCSD, Sanford Consortium Regenerat Med, Dept Pediat, La Jolla, CA 92037 USA
关键词
Data Independent Acquisition; DiagnoMass; single-cellproteomics; brain organoids; Rett syndrome; mass spectrometry;
D O I
10.1021/jasms.4c00187
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell proteomics has emerged as a powerful technology for unraveling the complexities of cellular heterogeneity, enabling insights into individual cell functions and pathologies. One of the primary challenges in single-cell proteomics is data generation, where low mass spectral signals often preclude the triggering of MS2 events. This challenge is addressed by Data Independent Acquisition (DIA), a data acquisition strategy that does not depend on peptide ion isotopic signatures to generate an MS2 event. In this study, we present data generated from the integration of DIA single-cell proteomics with a version of the DiagnoMass Proteomic Hub that was adapted to handle DIA data. DiagnoMass employs a hierarchical clustering methodology that enables the identification of tandem mass spectral clusters that are discriminative of biological conditions, thereby reducing the reliance on search engine biases for identifications. Nevertheless, a search engine (in this work, DIA-NN) can be integrated with DiagnoMass for spectral annotation. We used single-cell proteomic data from iPSC-derived neuroprogenitor cell cultures as a test study of this integrated approach. We were able to differentiate between control and Rett Syndrome patient cells to discern the proteomic variances potentially contributing to the disease's pathology. Our research confirms that the DiagnoMass-DIA synergy significantly enhances the identification of discriminative proteomic signatures, highlighting critical biological variations such as the presence of unique spectra that could be related to Rett Syndrome pathology.
引用
收藏
页码:2308 / 2314
页数:7
相关论文
共 50 条
  • [41] Single-cell insights into neurology
    Hannah Stower
    Nature Medicine, 2019, 25 : 1799 - 1799
  • [42] Decoding uterine leiomyoma tumorigenesis using single-cell transcriptomics and single-cell proteomics
    Machado-Lopez, A.
    Perez-Moraga, R.
    Punzon-Jimenez, P.
    Llera-Oyola, J.
    Galvez-Viedma, M.
    Grases, D.
    Aragon-Fernandez, P.
    Satorres, E.
    Roson, B.
    Schoof, E. M.
    Porta-Pardo, E.
    Simon, C.
    Mas, A.
    HUMAN REPRODUCTION, 2023, 38
  • [43] Cancer-associated fibroblast classification in single-cell and spatial proteomics data
    Lena Cords
    Sandra Tietscher
    Tobias Anzeneder
    Claus Langwieder
    Martin Rees
    Natalie de Souza
    Bernd Bodenmiller
    Nature Communications, 14
  • [44] Cancer-associated fibroblast classification in single-cell and spatial proteomics data
    Cords, Lena
    Tietscher, Sandra
    Anzeneder, Tobias
    Langwieder, Claus
    Rees, Martin
    de Souza, Natalie
    Bodenmiller, Bernd
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [45] IceR improves proteome coverage and data completeness in global and single-cell proteomics
    Kalxdorf, Mathias
    Mueller, Torsten
    Stegle, Oliver
    Krijgsveld, Jeroen
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [46] IceR improves proteome coverage and data completeness in global and single-cell proteomics
    Mathias Kalxdorf
    Torsten Müller
    Oliver Stegle
    Jeroen Krijgsveld
    Nature Communications, 12
  • [47] Single-cell proteomic analysis of S-cerevisiae reveals the architecture of biological noise
    Newman, John R. S.
    Ghaemmaghami, Sina
    Ihmels, Jan
    Breslow, David K.
    Noble, Matthew
    DeRisi, Joseph L.
    Weissman, Jonathan S.
    NATURE, 2006, 441 (7095) : 840 - 846
  • [48] Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise
    John R. S. Newman
    Sina Ghaemmaghami
    Jan Ihmels
    David K. Breslow
    Matthew Noble
    Joseph L. DeRisi
    Jonathan S. Weissman
    Nature, 2006, 441 : 840 - 846
  • [49] Single-cell biological lasers
    Gather, Malte C.
    Yun, Seok Hyun
    NATURE PHOTONICS, 2011, 5 (07) : 406 - 410
  • [50] Single-cell biological lasers
    Gather M.C.
    Yun S.H.
    Nature Photonics, 2011, 5 (7) : 406 - 410