Introducing sodium lignosulfonate as an effective promoter for CO2 sequestration as hydrates targeting gaseous and liquid CO2

被引:13
|
作者
Huang, Hailin [1 ]
Liu, Xuejian [1 ]
Lu, Hongfeng [2 ,3 ]
Xu, Chenlu [2 ,3 ]
Zhao, Jianzhong [4 ]
Li, Yan [1 ]
Gu, Yuhang [1 ]
Yin, Zhenyuan [1 ]
机构
[1] Tsinghua Univ, Inst Ocean Engn, Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[2] Minist Nat Resources, Guangzhou Marine Geol Survey, Guangzhou 510075, Peoples R China
[3] Natl Engn Res Ctr Gas Hydrate Explorat & Dev, Guangzhou 510075, Peoples R China
[4] Taiyuan Univ Technol, Minist Educ, Key Lab Insitu Property Improving Min, Taiyuan 030024, Peoples R China
来源
基金
美国国家科学基金会;
关键词
CCUS; CO2; hydrate; Sodium lignosulfonate; Kinetic promoter; Liquid CO2; GAS HYDRATE; AQUEOUS-SOLUTIONS; INDUCTION TIMES; IMPROVED MODEL; HIGH-CAPACITY; METHANE; SURFACTANTS; CAPTURE; STORAGE; SOLUBILITY;
D O I
10.1016/j.adapen.2024.100175
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hydrate-based CO2 sequestration (HBCS) emerges as a promising solution to sequestrate CO2 as solid hydrates for the benefit of reducing CO2 concentration in the atmosphere. The natural conditions of high-pressure and lowtemperature in marine seabed provide an ideal reservoir for CO2 hydrate, enabling long -term sequestration. A significant challenge in the application of HBCS is the identification of an environmental-friendly promoter to enhance or tune CO2 hydrate kinetics, which is intrinsically sluggish. In addition, the promoter identified should be effective in all CO2 sequestration conditions, covering CO2 injection as gas or liquid. In this study, we introduced sodium lignosulfonate (SL), a by -product from the papermaking industry, as an eco-friendly kinetic promoter for CO2 hydrate formation. The impact of SL (0-3.0 wt.%) on the kinetics of CO2 hydrate formation from gaseous and liquid CO2 was systematically investigated. CO2 hydrate morphology images were acquired for both gaseous and liquid CO2 in the presence of SL for the explanation of the observed promotion effect. The promotion effect of SL on CO2 hydrate formation is optimal at 1.0 wt.% with induction time reduced to 5.3 min and 21.1 min for gaseous and liquid CO2, respectively. Moreover, CO2 storage capacity increases by around two times at 1.0 wt.% SL, reaching 85.1 v/v and 57.1 v/v for gaseous and liquid CO2, respectively. The applicability of SL as an effective kinetic promoter for both gaseous and liquid CO2 was first demonstrated. A mechanism explaining how SL promotes CO2 hydrate formation was formulated with additional nucleation sites by SL micelles and the extended contact surface offered by generated gas bubbles or liquid droplets with SL. The study demonstrates that SL as an effective promoter for CO2 hydrate kinetics is possible for adoption in large-scale HBCS projects both nearshore and offshore.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Experimental investigation on heat transfer of an impinging jet of supercritical CO2 and comparison with liquid and gaseous CO2
    Kim, Seon Ho
    Park, Seong-Hyeok
    Park, Hee Seung
    Hsu, Wei -Ting
    Cho, Hyung Hee
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 153
  • [32] Thermodynamic and kinetic properties of CO2 hydrates and their applications in CO2 capture and separation
    Lee, Youngki
    Kim, Hyeonjin
    Lee, Wonhyeong
    Kang, Dong Woo
    Lee, Jae W.
    Ahn, Yun-Ho
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [33] A Dual-Role Additive as a CO2 Hydrate Promoter and a Corrosion Inhibitor: Application in CO2 Capture, Transportation, and Sequestration
    Choudhary, Varsha
    Tyagi, Aditi
    Negi, Shweta
    Prakashaiah, B. G.
    Pandey, Gaurav
    Kumar, Sanat
    Kumar, Asheesh
    ENERGY & FUELS, 2025,
  • [34] CO2 sequestration examined by DOE
    不详
    CHEMICAL & ENGINEERING NEWS, 1999, 77 (16) : 38 - 38
  • [35] Regulating the geological sequestration of CO2
    Wilson, Elizabeth J.
    Morgan, M. Granger
    Apt, Jay
    Bonner, Mark
    Bunting, Christopher
    Gode, Jenny
    Haszeldine, R. Stuart
    Jaeger, Carlo C.
    Keith, David W.
    McCoy, Sean T.
    Pollak, Melisa F.
    Reiner, David M.
    Rubin, Edward S.
    Torvanger, Asbjorn
    Ulardic, Christina
    Vajjhala, Shalini P.
    Victor, David G.
    Wright, Iain W.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (08) : 2718 - 2722
  • [36] CO2 - Going beyond sequestration
    Wray, Peter
    AMERICAN CERAMIC SOCIETY BULLETIN, 2010, 89 (06): : 21 - 21
  • [37] The CO2 Miscible Displacement and Sequestration
    Wu, Shouya
    Zhao, Dongya
    Zhang, Jian
    Lu, Shijian
    Li, Qingfang
    Liu, Haili
    2014 PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION & CONTROL (ICMIC), 2014, : 332 - 335
  • [38] Sequestration of CO2 by halotolerant algae
    Ramkrishnan, Udhaya
    Bruno, Benedict
    Swaminathan, Sandhya
    JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING, 2014, 12
  • [39] Geochemical aspects of CO2 sequestration
    Oelkers, EH
    Schott, J
    CHEMICAL GEOLOGY, 2005, 217 (3-4) : 183 - 186
  • [40] CO2 SEQUESTRATION AND EARTH PROCESSES
    Goel, Malti
    EVERYMANS SCIENCE, 2012, 47 (05): : 289 - 295