The compressive strengths of three varieties of high purity graphite, PCEA, NBG-18, and NBG-25, as well as the depth of penetration of small-scale charges into these materials was experimentally determined. These grades are similar in density, ranging from 1.80 - 1.85 g/cc, and nominal apparent porosity, ranging from 18% to 20%, but provide a wide range in maximum grain or particle size from 10s to 1000s of mu m. Two very different manufacturing methods are also represented; PCEA is extruded while NBG-18 and NBG-25 are iso-molded. The quasistatic and dynamic strengths of each grade were determined on a load frame and split-Hopkinson pressure bar, respectively. The depth of penetration (DOP) of two small-scale shaped charges, the Teledyne RP-1 and RP-4, was determined against graphite. The global response of the RP-4 impacts was markedly different as the PCEA samples remained intact while all the NBG-25 samples split into 2 or 3 pieces after the jet penetration had completed. However, for all tests, the trusted DOPs fell within 2 cm. Preliminary hydrocode modeling of the penetration events used existing models that were not designed for graphite. The results can be tuned to reasonably reproduce the DOP, but the wound channel geometry is not reproduced well. A model designed for graphite would need to represent graphite's non-linear and energy dissipation characteristics.