An Lp-theory for fractional stationary Navier-Stokes equations

被引:0
|
作者
Jarrin, Oscar [1 ]
Vergara-Hermosilla, Gaston [2 ]
机构
[1] Univ Amer, Escuela Ciencias Fis & Matemat, Via Nayon, Quito 170124, Ecuador
[2] Univ Paris Saclay, Lab Math & Modelisat Evry, CNRS, UMR 8071, F-91025 Evry, France
关键词
Stationary Navier-Stokes equations; Fractional Laplacian operator; Weak solutions; Lorentz spaces; Regularity and Liouville-type problem; SUITABLE WEAK SOLUTIONS; ELLIPTIC-EQUATIONS; PARTIAL REGULARITY; MULTIPLIERS;
D O I
10.1007/s41808-024-00282-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the stationary (time-independent) Navier-Stokes equations in the whole three-dimensional space, under the action of a source term and with the fractional Laplacian operator (-Delta)(alpha/2) in the diffusion term. In the framework of Lebesgue and Lorentz spaces, we find some natural sufficient conditions on the external force and on the parameter alpha to prove the existence and in some cases nonexistence of solutions. Secondly, we obtain sharp pointwise decay rates and asymptotic profiles of solutions, which strongly depend on alpha. Finally, we also prove the global regularity of solutions. As a bi-product, we obtain some uniqueness theorems so-called Liouville-type results. On the other hand, our regularity result yields a new regularity criterion for the classical (i.e. with alpha = 2) stationary Navier-Stokes equations.
引用
收藏
页数:40
相关论文
共 50 条
  • [31] ON THE LP-THEORY OF NAVIER-STOKES EQUATION SET FOR UNBOUNDED-DOMAINS WITH NON-COMPACT BOUNDARIES
    BOGOVSKII, ME
    [J]. DOKLADY AKADEMII NAUK SSSR, 1980, 255 (06): : 1296 - 1301
  • [32] Energy methods for fractional Navier-Stokes equations
    Zhou, Yong
    Peng, Li
    Ahmad, Bashir
    Alsaedi, Ahmed
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 78 - 85
  • [33] Fractional Optimal Control of Navier-Stokes Equations
    Hyder, Abd-Allah
    El-Badawy, M.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 64 (02): : 859 - 870
  • [34] NAVIER-STOKES EQUATIONS, TURBULENCE, AND FRACTIONAL CALCULUS
    MORITZ, E
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (01): : 54 - 54
  • [35] On the time-fractional Navier-Stokes equations
    Zhou, Yong
    Peng, Li
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 874 - 891
  • [37] Stationary Stokes, Oseen and Navier-Stokes Equations with Singular Data
    Amrouche, Cherif
    Angeles Rodriguez-Bellido, M.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (02) : 597 - 651
  • [38] On Regularity of Stationary Stokes and Navier-Stokes Equations near Boundary
    Kang, Kyungkeun
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2004, 6 (01) : 78 - 101
  • [39] On Regularity of Stationary Stokes and Navier-Stokes Equations near Boundary
    Kyungkeun Kang
    [J]. Journal of Mathematical Fluid Mechanics, 2004, 6 : 78 - 101
  • [40] Fractional Navier-Stokes Equations With Delay Conditions
    Ben Tahir, Hachem
    Melliani, S.
    Elomari, M.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 15 - 15