Modeling of the impact of the soil roughness on PolSAR images

被引:0
|
作者
Weissgerber, Flora [1 ]
Colin-Koeniguer, Elise [1 ]
Trouve, Nicolas [1 ]
机构
[1] Univ Paris Saclay, ONERA, F-91123 Palaiseau, France
关键词
SURFACE-ROUGHNESS;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The PolSAR response of a surface depends of multiple parameters, amongst which the variation of radar backscatter with the incidence angle and its roughness. To investigate the coupling between these parameters, we model the terrain as a layer of scatterers, defined by their position, their normal and a complex RCS. The SAR image is computed from the coherent sum of the scatterers directly in the SAR geometry. We show that a difference in backscattered energy between the polarimetric channel can be rendered by this simple modeling, and that some terrains lead to a decorrelation between the polarimetric channels.
引用
收藏
页码:599 / 604
页数:6
相关论文
共 50 条
  • [21] Fain Ship Wake Detection in PolSAR Images
    Xu, Zhou
    Tang, Bo
    Cheng, Shuiying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (07) : 1055 - 1059
  • [22] Characterizing Bidimensional Roughness of Agricultural Soil Surfaces for SAR Modeling
    Blaes, Xavier
    Defourny, Pierre
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (12): : 4050 - 4061
  • [23] Despeckling PolSAR Images With a Structure Tensor Filter
    Santana-Cedres, Daniel
    Gomez, Luis
    Alvarez, Luis
    Frery, Alejandro C.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) : 357 - 361
  • [24] Unsupervised learning rules for POLSAR images analysis
    Chitroub, S
    Houacine, A
    Sansal, B
    NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, 2002, : 567 - 576
  • [25] Unsupervised learning rules for POLSAR images analysis
    Signal Processing Laboratory, Electrical Engineering Faculty, USTHB, P. O. Box 32, El-Alia, Bab-Ezzouar, Algiers
    16111, Algeria
    Neural Networks Signal Process Proc IEEE, 1600, (567-576):
  • [26] Feature Selection for Edge Detection in PolSAR Images
    De Borba, Anderson A.
    Muhuri, Arnab
    Marengoni, Mauricio
    Frery, Alejandro C.
    REMOTE SENSING, 2023, 15 (09)
  • [27] A Distribution Independent Ship Detector for PolSAR Images
    Xu, Zhou
    Fan, Chongyi
    Cheng, Shuiying
    Wang, Jian
    Huang, Xiaotao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3774 - 3786
  • [28] MULTITEMPORAL MULTIDIMENSIONAL SPECKLE FILTERING OF POLSAR IMAGES
    Salehi, Maryam
    Mohammadzadeh, Ali
    Maghsoudi, Yasser
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4749 - 4752
  • [29] RIEMANNIAN SPARSE CODING FOR CLASSIFICATION OF POLSAR IMAGES
    Yang, Wen
    Zhong, Neng
    Yang, Xiangli
    Cherian, Anoop
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5698 - 5701
  • [30] Random Ferns for Semantic Segmentation of PolSAR Images
    Wei, Pengchao
    Hansch, Ronny
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60