Unsupervised Illumination Adaptation for Low-Light Vision

被引:3
|
作者
Wang, Wenjing [1 ]
Luo, Rundong [1 ]
Yang, Wenhan [2 ]
Liu, Jiaying [1 ]
机构
[1] Peking Univ, Wangxuan Inst Comp Technol, Beijing 100080, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518066, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Training; Adaptation models; Lighting; Cameras; Data models; Face recognition; Domain adaptation; high-level vision; illumination enhancement; low-light; self-supervised learning; IMAGE; ENHANCEMENT; RETINEX;
D O I
10.1109/TPAMI.2024.3382108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Insufficient lighting poses challenges to both human and machine visual analytics. While existing low-light enhancement methods prioritize human visual perception, they often neglect machine vision and high-level semantics. In this paper, we make pioneering efforts to build an illumination enhancement model for high-level vision. Drawing inspiration from camera response functions, our model could enhance images from the machine vision perspective despite being lightweight in architecture and simple in formulation. We also introduce two approaches that leverage knowledge from base enhancement curves and self-supervised pretext tasks to train for different downstream normal-to-low-light adaptation scenarios. Our proposed framework overcomes the limitations of existing algorithms without requiring access to labeled data in low-light conditions. It facilitates more effective illumination restoration and feature alignment, significantly improving the performance of downstream tasks in a plug-and-play manner. This research advances the field of low-light machine analytics and broadly applies to various high-level vision tasks, including classification, face detection, optical flow estimation, and video action recognition.
引用
收藏
页码:5951 / 5966
页数:16
相关论文
共 50 条
  • [21] Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement
    Jiang, Qiuping
    Mao, Yudong
    Cong, Runmin
    Ren, Wenqi
    Huang, Chao
    Shao, Feng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19440 - 19455
  • [22] An unsupervised low-light image enhancement method for improving V-SLAM localization in uneven low-light construction sites
    Chen, Xinyu
    Yu, Yantao
    AUTOMATION IN CONSTRUCTION, 2024, 162
  • [23] LIME: Low-Light Image Enhancement via Illumination Map Estimation
    Guo, Xiaojie
    Li, Yu
    Ling, Haibin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (02) : 982 - 993
  • [24] Deep Multi-Illumination Fusion for Low-Light Image Enhancement
    Zhong, Wei
    Lin, Jie
    Ma, Long
    Liu, Risheng
    Fan, Xin
    PATTERN RECOGNITION AND COMPUTER VISION,, PT III, 2021, 13021 : 140 - 150
  • [25] Illumination Guided Attentive Wavelet Network for Low-Light Image Enhancement
    Xu, Jingzhao
    Yuan, Mengke
    Yan, Dong-Ming
    Wu, Tieru
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6258 - 6271
  • [26] Exploiting Illumination Knowledge in the Real World for Low-Light Image Enhancement
    Guo, Lanqing
    Lin, Yuxin
    Li, Jian
    Wen, Bihan
    IEEE MULTIMEDIA, 2024, 31 (01) : 33 - 41
  • [27] Frequency-Based Unsupervised Low-Light Image Enhancement Framework
    Wang, Haodian
    MULTIMEDIA MODELING, MMM 2025, PT I, 2025, 15520 : 427 - 439
  • [28] Low-light image enhancement based on multi-illumination estimation
    Feng, Xiaomei
    Li, Jinjiang
    Hua, Zhen
    Zhang, Fan
    APPLIED INTELLIGENCE, 2021, 51 (07) : 5111 - 5131
  • [29] Deep Illumination-Aware Dehazing With Low-Light and Detail Enhancement
    Kim, Guisik
    Kwon, Junseok
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (03) : 2494 - 2508
  • [30] Low-light image enhancement based on multi-illumination estimation
    Xiaomei Feng
    Jinjiang Li
    Zhen Hua
    Fan Zhang
    Applied Intelligence, 2021, 51 : 5111 - 5131