INHOUSE MULTI-MATERIAL NOZZLE SYSTEM DESIGN AND FABRICATION FOR 3D BIOPRINTING PROCESS: NEXT STEP

被引:0
|
作者
Quigley, Connor [1 ]
Hurd, Warren [1 ]
Clark, Scott [1 ]
Sarah, Rokeya [1 ]
Habib, Md Ahasan [1 ]
机构
[1] Keene State Coll, Dept Sustainable Prod Design & Architecture, Keene, NH 03431 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Three-dimensional (3D) bio-printing is a rapidly growing field attempting to recreate functional tissues for medical and pharmaceutical purposes. The printability of multiple materials encapsulating various living cells can take this emerging effort closer to tissue regeneration. In our earlier research, we designed a Y-like nozzle connector system capable of switching materials between more than one filament with continuous deposition. The device had a fixed switching angle, was made from plastic, and was suitable for one-time use. This paper presents the extension of our previously proposed nozzle system. We considered 300, 450, 600, and 900 angles (vertical and tilted) between the two materials and chose stainless steel as a material to fabricate those nozzle connectors. The overall material switching time was recorded and compared to analyze the effects of those various angles. Our previously developed hybrid hydrogel (4% Alginate and 4% Carboxymethyl Cellulose, CMC) was used as a test material to flow through the nozzle system. These in-house fabricated nozzle connectors are reusable, easy to clean, and sterile, allowing smooth material transition and flow.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Coating process of multi-material composite sand mold 3D printing
    Zhong-de Shan
    Zhi Guo
    Dong Du
    Feng Liu
    China Foundry, 2017, 14 : 498 - 505
  • [32] Coating process of multi-material composite sand mold 3D printing
    Zhong-de Shan
    Zhi Guo
    Dong Du
    Feng Liu
    China Foundry, 2017, 14 (06) : 498 - 505
  • [33] Multi-material Direct Ink Writing 3D Food Printing using Multi-channel Nozzle
    Lee, Cheng Pau
    Ng, Mervin Jian Yi
    Chian, Nicole Min Yu
    Hashimoto, Michinao
    FUTURE FOODS, 2024, 10
  • [34] Design and analysis of multi-material structures of 3D printed implants of mandible
    Kalaithendral, K.
    Karuppudaiyan, S.
    Roy, Sandipan
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2023, 9 (06)
  • [35] Mechanically interlocked 3D multi-material micromachines
    C. C. J. Alcântara
    F. C. Landers
    S. Kim
    C. De Marco
    D. Ahmed
    B. J. Nelson
    S. Pané
    Nature Communications, 11
  • [36] A transplantable pre-vascularized tissue platform by using a multi-material microfluidic 3D bioprinting method
    Kim, Donghwan
    Yong, Uijung
    Choi, Yoo-mi
    Kim, Daekeun
    Jang, Jinah
    TISSUE ENGINEERING PART A, 2022, 28 : 639 - 639
  • [37] Mechanically interlocked 3D multi-material micromachines
    Alcantara, C. C. J.
    Landers, F. C.
    Kim, S.
    De Marco, C.
    Ahmed, D.
    Nelson, B. J.
    Pane, S.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [38] Parallel, Multi-Material Electrohydrodynamic 3D Nanoprinting
    Chen, Mojun
    Lee, Heekwon
    Yang, Jihyuk
    Xu, Zhaoyi
    Huang, Nan
    Chan, Barbara Pui
    Kim, Ji Tae
    SMALL, 2020, 16 (13)
  • [39] Advances for 3D printing: Remote control system and multi-material solutions
    Luque Luque, Adrian
    Jurado Rodriguez, Juan Manuel
    Cardenas Donoso, Jose Luis
    Feito Higueruela, Francisco R.
    26. INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS, VISUALIZATION AND COMPUTER VISION (WSCG 2018), 2018, 2802 : 160 - 163
  • [40] Design and Fabrication of Magnetic System Using Multi-Material Topology Optimization
    Jung, Taehoon
    Lee, Jaejoon
    Lee, Jaewook
    IEEE ACCESS, 2021, 9 : 8649 - 8658