Gas and Water Relative Permeability in THF Hydrate-Bearing Berea Sandstone

被引:1
|
作者
Wang, Zihao [1 ,2 ,3 ]
Wan, Yizhao [2 ,3 ]
Zhang, Yongchao [2 ,3 ]
Bu, Qingtao [2 ,3 ]
Ji, Yunkai [2 ,3 ]
Liu, Lele [2 ,3 ]
Zhao, Wengao [2 ,3 ]
Zhao, Yapeng [2 ,3 ]
Hu, Gaowei [1 ,2 ,3 ]
机构
[1] Chinese Acad Geol Sci, Beijing 100037, Peoples R China
[2] Minist Nat Resources, Qingdao Inst Marine Geol, Key Lab Gas Hydrate, Qingdao 266237, Peoples R China
[3] Qingdao Marine Sci & Technol Ctr, Lab Marine Mineral Resources, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
METHANE HYDRATE; POROUS-MEDIA; MODEL; DEPRESSURIZATION; SATURATION; SEDIMENTS; CH4; DISSOCIATION; INHIBITORS; WELL;
D O I
10.1021/acs.energyfuels.4c01402
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Two-phase (pore liquid and gas) relative permeability through gas hydrate-bearing sediments (HBSs) is probably the most critical property to understand gas production from natural reservoirs, as both the gas released from hydrate dissociation and pore liquid flow toward the well. Accurate estimations of the relative permeability for gas and water in HBSs and its dependence on hydrate saturation are vital for predicting the productivity of hydrate reservoirs. However, the lack of experimental data and the challenges in conducting multiphase flow experiments in HBSs have hindered precise estimations. In this study, novel apparatus was developed to measure the relative permeability of nitrogen gas (N-2) and water in tetrahydrofuran (THF) hydrate-bearing Berea sandstone core samples. The gas-water relative permeability was determined at reservoir conditions for varying hydrate saturations, specifically 0, 10, 30, 50, and 80%, in the same Berea sample. Our findings demonstrate that water relative permeability increases, while gas relative permeability decreases with increasing water saturation. Furthermore, higher hydrate saturation within Berea sandstone pores reduces the relative permeability for both gas and water, with a more pronounced relative reduction observed for higher water saturations. Numerically, water relative permeability is approximately 2 orders of magnitude higher than gas relative permeability across different hydrate saturation conditions. Moreover, the influence of hydrate saturation on gas relative permeability is more significant compared to that of water relative permeability. According to the fitting results, the relative permeability curve in our study cannot fit well the current models (Brooks-Corey model and van Genuchten model), but our experimental data are in good agreement with existing research on the order of magnitude. The experimental error of relative permeability results mainly depends on the differential pressure. The limitations of this experiment are mainly reflected by steady-state methods and the hydrate saturations. These results provide valuable insights into the relative permeability behavior in HBSs and contribute to a better understanding of the hydrate reservoir productivity.
引用
收藏
页码:11706 / 11716
页数:11
相关论文
共 50 条
  • [1] Relative water and gas permeability for gas production from hydrate-bearing sediments
    Mahabadi, Nariman
    Jang, Jaewon
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2014, 15 (06): : 2346 - 2353
  • [2] A Menhanistic Model for Relative Permeability of Gas and water Flow in Hydrate-Bearing Porous Media With Capillarity
    Singh, Harpreet
    Mahabadi, Nariman
    Myshakin, Evgeniy M.
    Seol, Yongkoo
    WATER RESOURCES RESEARCH, 2019, 55 (04) : 3414 - 3432
  • [3] Measurements of CH4 and CO2 relative permeability in hydrate-bearing sandstone
    Almenningen, Stian
    Gauteplass, Jarand
    Hauge, Lars Petter
    Barth, Tanja
    Ferno, Martin Anders
    Ersland, Geir
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 177 : 880 - 888
  • [4] A Nonempirical Relative Permeability Model for Hydrate-Bearing Sediments
    Singh, Harpreet
    Myshakin, Evgeniy M.
    Seol, Yongkoo
    SPE JOURNAL, 2019, 24 (02): : 547 - 562
  • [5] Impact of hydrate saturation on water permeability in hydrate-bearing sediments
    Mahabadi, Nariman
    Dai, Sheng
    Seol, Yongkoo
    Jang, Jaewon
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 174 : 696 - 703
  • [6] Effect of Hydrate on Gas/Water Relative Permeability of Hydrate-Bearing Sediments: Pore-Scale Microsimulation by the Lattice Boltzmann Method
    Xin, Xin
    Yang, Bo
    Xu, Tianfu
    Xia, Yingli
    Li, Si
    GEOFLUIDS, 2021, 2021
  • [7] Impact of hydrate spatial heterogeneity on gas permeability in hydrate-bearing sediments
    Li, Yanghui
    Wei, Zhaosheng
    Wang, Haijun
    Wu, Peng
    Zhang, Shuheng
    You, Zeshao
    Liu, Tao
    Huang, Lei
    Song, Yongchen
    ENERGY, 2024, 293
  • [8] A fractal model for the relative permeability prediction of hydrate-bearing sediments
    Liu LeLe
    Zhang Zhun
    Ning FuLong
    Li ChengFeng
    Cai JianChao
    Wang DaiGang
    Liu ChangLing
    Wu NengYou
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2019, 49 (03)
  • [9] Permeability of hydrate-bearing sediments
    Ren, Xingwei
    Guo, Zeyu
    Ning, Fulong
    Ma, Shuzhi
    EARTH-SCIENCE REVIEWS, 2020, 202
  • [10] Water and Gas Flows in Hydrate-Bearing Sediments
    Xu, Yue
    Seol, Yongkoo
    Jang, Jaewon
    Dai, Sheng
    GEOTECHNICAL FRONTIERS 2017: GEOTECHNICAL MATERIALS, MODELING, AND TESTING, 2017, (280): : 766 - 772