Impact of hydrate spatial heterogeneity on gas permeability in hydrate-bearing sediments

被引:13
|
作者
Li, Yanghui [1 ]
Wei, Zhaosheng [1 ]
Wang, Haijun [1 ]
Wu, Peng [1 ]
Zhang, Shuheng [1 ]
You, Zeshao [1 ]
Liu, Tao [1 ]
Huang, Lei [1 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
关键词
Natural gas hydrate; Permeability; Heterogeneous; Effective stress; Hydrate saturation; METHANE HYDRATE; MODEL; SAND; FLOW;
D O I
10.1016/j.energy.2024.130717
中图分类号
O414.1 [热力学];
学科分类号
摘要
The permeability characteristic of hydrate-bearing sediments (HBSs) is an essential factor for assessing the exploiting potential of target area. The two trial tests in the South China Sea have demonstrated the production feasibility of clayey hydrate reservoirs, and further clarifying main controlling factors of the permeability characteristic is an essential prerequisite for commercial development. However, the current studies mainly focus on homogeneous HBSs with different saturations and porosities, ignoring the natural spatial heterogeneity of hydrate since the sedimentary and accumulation history. In this study, spatial heterogeneous hydrate (0-23.1%) was generated in montmorillonite specimens, and effective stress (1-5 MPa) was applied. The results show that 1) HBSs permeability with heterogeneity hydrate occurrence presents an exponential-like relationship with saturation. 2) Heterogeneous hydrate occurrence would reduce the permeability sensitivity to saturation. 3) The permeability of heterogeneous HBSs decreases in a power function trend with increasing effective stress. 4) The heterogeneity reduces compression effect and decreases permeability damage rate. 5) Increasing hydrate spatial heterogeneity would decrease HBSs permeability.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Impact of hydrate saturation on water permeability in hydrate-bearing sediments
    Mahabadi, Nariman
    Dai, Sheng
    Seol, Yongkoo
    Jang, Jaewon
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 174 : 696 - 703
  • [2] Permeability of hydrate-bearing sediments
    Ren, Xingwei
    Guo, Zeyu
    Ning, Fulong
    Ma, Shuzhi
    EARTH-SCIENCE REVIEWS, 2020, 202
  • [3] Effect of hydrate distribution on effective permeability of hydrate-bearing sediments
    He, Juan
    Li, Xiaosen
    Chen, Zhaoyang
    GAS SCIENCE AND ENGINEERING, 2023, 116
  • [4] A mechanistic model for permeability in deformable gas hydrate-bearing sediments
    Lei, Gang
    Liao, Qinzhuo
    Zhang, Dongxiao
    Patil, Shirish
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 83
  • [5] A permeability model for gas hydrate-bearing sediments considering the changes in hydrate occurring habits
    Huang, Nan
    Zhu, Bin
    Wang, Lu-Jun
    Yantu Lixue/Rock and Soil Mechanics, 2024, 45 (08): : 2387 - 2396
  • [6] Permeability Analysis of Hydrate-Bearing Sediments during the Hydrate Formation Process
    Li, Min
    Wu, Peng
    Zhou, Shanshan
    Zhang, Lunxiang
    Yang, Lei
    Li, Yanghui
    Liu, Yu
    Zhao, Jiafei
    Song, Yongchen
    ENERGY & FUELS, 2021, 35 (23) : 19606 - 19613
  • [7] Relative water and gas permeability for gas production from hydrate-bearing sediments
    Mahabadi, Nariman
    Jang, Jaewon
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2014, 15 (06): : 2346 - 2353
  • [8] A geomechanical model for gas hydrate-bearing sediments
    Gai, Xuerui
    Sanchez, Marcelo
    ENVIRONMENTAL GEOTECHNICS, 2017, 4 (02): : 143 - 156
  • [9] Water and Gas Flows in Hydrate-Bearing Sediments
    Xu, Yue
    Seol, Yongkoo
    Jang, Jaewon
    Dai, Sheng
    GEOTECHNICAL FRONTIERS 2017: GEOTECHNICAL MATERIALS, MODELING, AND TESTING, 2017, (280): : 766 - 772
  • [10] Elastic properties of gas hydrate-bearing sediments
    Lee, MW
    Collett, TS
    GEOPHYSICS, 2001, 66 (03) : 763 - 771