What Is the Real Origin of Single-Walled Carbon Nanotubes for the Performance Enhancement of Si-Based Anodes?

被引:0
|
作者
Wang, Haolin [1 ]
Chao, Yunfeng [2 ]
Li, Jinzhao [2 ]
Qi, Qi [1 ]
Lu, Junfeng [3 ]
Yan, Pengfei [2 ]
Nie, Yanyan [4 ]
Wang, Liu [2 ]
Chen, Jiafu [1 ]
Cui, Xinwei [1 ,2 ]
机构
[1] Zhengzhou Univ, Coll Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Henan Inst Adv Technol, Zhengzhou 450003, Peoples R China
[3] Chinese Acad Sci, Inst Proc Engn, Beijing Key Lab Ion Liquids Clean Proc, State Key Lab Multiphase Complex Syst,CAS Key Lab, Beijing 100190, Peoples R China
[4] Henan Kelaiwei Nano Carbon Mat Co Ltd, Dengfeng 452470, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
BATTERY ANODES; SILICON; COMPOSITE; GRAPHENE; LITHIATION; DESIGN; PARTICLES; STRAIN;
D O I
10.1021/jacs.4c01677
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A large amount of lithium-ion storage in Si-based anodes promises high energy density yet also results in large volume expansion, causing impaired cyclability and conductivity. Instead of restricting pulverization of Si-based particles, herein, we disclose that single-walled carbon nanotubes (SWNTs) can take advantage of volume expansion and induce interfacial reactions that stabilize the pulverized Si-based clusters in situ. Operando Raman spectroscopy and density functional theory calculations reveal that the volume expansion by the lithiation of Si-based particles generates similar to 14% tensile strains in SWNTs, which, in turn, strengthens the chemical interaction between Li and C. This chemomechanical coupling effect facilitates the transformation of sp(2)-C at the defect of SWNTs to Li-C bonds with sp(3) hybridization, which also initiates the formation of new Si-C chemical bonds at the interface. Along with this process, SWNTs can also induce in situ reconstruction of the 3D architecture of the anode, forming mechanically strengthened networks with high electrical and ionic conductivities. As such, with the addition of only 1 wt % of SWNTs, graphite/SiOx composite anodes can deliver practical performance well surpassing that of commercial graphite anodes. These findings enrich our understanding of strain-induced interfacial reactions, providing a general principle for mitigating the degradation of alloying or conversion-reaction-based electrodes.
引用
收藏
页码:17041 / 17053
页数:13
相关论文
共 50 条
  • [21] Chemistry of single-walled carbon nanotubes
    Niyogi, S
    Hamon, MA
    Hu, H
    Zhao, B
    Bhowmik, P
    Sen, R
    Itkis, ME
    Haddon, RC
    ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) : 1105 - 1113
  • [22] Cutting single-walled carbon nanotubes
    Ziegler, KJ
    Gu, ZN
    Shaver, J
    Chen, ZY
    Flor, EL
    Schmidt, DJ
    Chan, C
    Hauge, RH
    Smalley, RE
    NANOTECHNOLOGY, 2005, 16 (07) : S539 - S544
  • [23] Formylation of single-walled carbon nanotubes
    Bayazit, Mustafa K.
    Suri, Anil
    Coleman, Karl S.
    CARBON, 2010, 48 (12) : 3412 - 3419
  • [24] Photoconductivity of single-walled carbon nanotubes
    Fujiwara, A
    Matsuoka, Y
    Suematsu, H
    Ogawa, N
    Miyano, K
    Kataura, H
    Maniwa, Y
    Suzuki, S
    Achiba, Y
    NANONETWORK MATERIALS: FULLERENES, NANOTUBES AND RELATED SYSTEMS, 2001, 590 : 189 - 192
  • [25] Antioxidant single-walled carbon nanotubes
    Departments of Chemistry and Mechanical Engineering and Materials Science, Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX 77005
    不详
    J. Am. Chem. Soc., 2009, 11 (X3934-3941):
  • [26] Localization in single-walled carbon nanotubes
    Fuhrer, MS
    Cohen, ML
    Zettl, A
    Crespi, V
    SOLID STATE COMMUNICATIONS, 1999, 109 (02) : 105 - 109
  • [27] Silylation of single-walled carbon nanotubes
    Hemraj-Benny, Tirandai
    Wong, Stanislaus S.
    CHEMISTRY OF MATERIALS, 2006, 18 (20) : 4827 - 4839
  • [28] Functionalization of single-walled carbon nanotubes
    Hirsch, A
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2002, 41 (11) : 1853 - 1859
  • [29] Purification of single-walled carbon nanotubes
    Pillai, Sreejarani K.
    Ray, Suprakas Sinha
    Moodley, Mathew
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (09) : 3011 - 3047
  • [30] Nucleation of single-walled carbon nanotubes
    Fan, X
    Buczko, R
    Puretzky, AA
    Geohegan, DB
    Howe, JY
    Pantelides, ST
    Pennycook, SJ
    PHYSICAL REVIEW LETTERS, 2003, 90 (14)