A Real-Time, Robust Visual-Inertial Navigation System Tightly Coupled With GNSS and Barometer

被引:1
|
作者
Che, Yifan [1 ]
Dong, Jiuxiang [1 ]
机构
[1] Northeast Univ, Sch Informat Sci & Engn, Shenyang 110000, Liaoning, Peoples R China
关键词
Sensor systems; multisensor fusion; nonlinear optimization; robust state estimation; visual-inertial-GNSS-Barometer odometry; MULTISENSOR FUSION; VINS;
D O I
10.1109/LSENS.2024.3399552
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Visual-inertial navigation systems suffer from accmulated errors and poor robustness. This letter proposes a solution to address these challenges by fusing global navigation satellite system (GNSS) and barometer measurements. Barometer could provides higher measurement precision compared to GNSS in altitude. We have developed a "novel sensor" by creatively integrating measurements from GNSS and barometer. A nonlinear optimization method is used to tightly couple measurements of GNSS-Barometer (GB), visual and inertial information for real-time and robust state estimation. The proposed GB aided visual-inertial navigation system (GB-VINS) is evaluated on extensive large-scale urban driving datasets. GB-VINS demonstrates competitive performance compared with the existing state-of-the-art methods on publicly available datasets.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] R 2 LIVE: A Robust, Real-Time, LiDAR-Inertial-Visual Tightly-Coupled State Estimator and Mapping
    Lin, Jiarong
    Zheng, Chunran
    Xu, Wei
    Zhang, Fu
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 7469 - 7476
  • [32] Robust Multispectral Visual-Inertial Navigation With Visual Odometry Failure Recovery
    Beauvisage, Axel
    Ahiska, Kenan
    Aouf, Nabil
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 9089 - 9101
  • [33] DGVINS: tightly coupled differential GNSS/visual/inertial for robust positioning based on optimization approach
    Li, Xiaowan
    Cheng, Fang
    Li, Yuanqi
    Shen, Pengli
    Hu, Yuhang
    Lu, Xiaochun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (08)
  • [34] Visual-Inertial Navigation System Based on Virtual Inertial Sensors
    Cai, Yunpiao
    Qian, Weixing
    Zhao, Jiaqi
    Dong, Jiayi
    Shen, Tianxiao
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [35] Robust adaptive filter using fuzzy logic for tightly-coupled visual inertial odometry navigation system
    Yue, Zhe
    Lian, Baowang
    Gao, Yuting
    IET RADAR SONAR AND NAVIGATION, 2020, 14 (03): : 364 - 371
  • [36] Visual-Inertial Odometry Tightly Coupled with Wheel Encoder Adopting Robust Initialization and Online Extrinsic Calibration
    Liu, Jinxu
    Gao, Wei
    Hu, Zhanyi
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 5391 - 5397
  • [37] Efficient Real-Time Road Curvature Estimation : Visual-Inertial Approach
    Alrazouk, Obaida
    Chellali, Amine
    Nehaoua, Lamri
    Arioui, Hichem
    IFAC PAPERSONLINE, 2023, 56 (02): : 4953 - 4958
  • [38] Large-scale, real-time visual-inertial localization revisited
    Lynen, Simon
    Zeisl, Bernhard
    Aiger, Dror
    Bosse, Michael
    Hesch, Joel
    Pollefeys, Marc
    Siegwart, Roland
    Sattler, Torsten
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (09): : 1061 - 1084
  • [39] GNSS PPP-RTK tightly coupled with low-cost visual-inertial odometry aiming at urban canyons
    Feng Wang
    Jianghui Geng
    Journal of Geodesy, 2023, 97
  • [40] Review of visual-inertial navigation system initialization method
    Liu Z.
    Shi D.
    Yang S.
    Li R.
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2023, 45 (02): : 15 - 26