On V-Geometric Ergodicity Markov Chains of the Two-Inertia Systems

被引:0
|
作者
Hu, Feng-Rung [1 ]
Hu, Jia-Sheng [2 ]
机构
[1] Natl Taichung Univ Educ, Dept Math Educ, Taichung 4403514, Taiwan
[2] Natl Univ Tainan, Dept Greenergy, Tainan 700301, Taiwan
关键词
two-inertia system; diffusion process; geometrical ergodicity; markov chain; ASYMPTOTIC BEHAVIORS;
D O I
10.3390/math12101492
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study employs the diffusion process to construct Markov chains for analyzing the common two-inertia systems used in industry. Two-inertia systems are prevalent in commonly used equipment, where the load is influenced by the coupling of external force and the drive shaft, leading to variations in the associated output states. Traditionally, the control of such systems is often guided by empirical rules. This paper examines the equilibrium distribution and convergence rate of the two-inertia system and develops a predictive model for its long-term operation. We explore the qualitative behavior of the load end at discrete time intervals. Our findings are applicable not only in control engineering, but also provide insights for small-scale models incorporating dual-system variables.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] On Observer-Based Active Vibration Control of Two-Inertia Systems
    Zheng, Qinling
    Gao, Zhiqiang
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 6619 - 6624
  • [22] H∞ control design for joint torque control of two-inertia systems
    Saeki, Masami
    Usui, Ryota
    2017 56TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2017, : 1208 - 1212
  • [23] Evaluating the Equivalence between Nonlinear Friction and Backlash in Two-Inertia Systems
    Padron, Juan
    Yokokura, Yuki
    Ohishi, Kiyoshi
    Miyazaki, Toshimasa
    Kawai, Yusuke
    2022 IEEE 17TH INTERNATIONAL CONFERENCE ON ADVANCED MOTION CONTROL (AMC), 2022, : 335 - 340
  • [24] Necessary conditions for geometric and polynomial ergodicity of random-walk-type Markov chains
    Jarner, SF
    Tweedie, RL
    BERNOULLI, 2003, 9 (04) : 559 - 578
  • [25] Geometric ergodicity for some space-time max-stable Markov chains
    Koch, Erwan
    Robert, Christian Y.
    STATISTICS & PROBABILITY LETTERS, 2019, 145 : 43 - 49
  • [26] Moment bounds and ergodicity of switching diffusion systems involving two-time-scale Markov chains
    Li, Xiaoyue
    Wang, Rui
    Yin, George
    SYSTEMS & CONTROL LETTERS, 2019, 132
  • [27] An Active Disturbance Rejection Based Approach to Vibration Suppression in Two-Inertia Systems
    Zhao, Shen
    Gao, Zhiqiang
    ASIAN JOURNAL OF CONTROL, 2013, 15 (02) : 350 - 362
  • [28] A Robust Nonlinear Feedback Control Approach for the Two-inertia Servo Drive systems
    Cheng, Guoyang
    Hu, Jin-gao
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 7822 - 7827
  • [29] An Active Disturbance Rejection Based Approach to Vibration Suppression in Two-Inertia Systems
    Zhao, Shen
    Gao, Zhiqiang
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 1520 - 1525
  • [30] Piecewise Affine (PWA) Modeling and Switched Damping Control of Two-Inertia Systems with Backlash
    Yamada, Shota
    Ruderman, Michael
    Fujimoto, Hiroshi
    2018 IEEE 15TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL (AMC), 2018, : 479 - 484