Steel Surface Defect Detection Algorithm Based on Improved YOLOv8n

被引:1
|
作者
Zhang, Tian [1 ]
Pan, Pengfei [1 ]
Zhang, Jie [1 ]
Zhang, Xiaochen [1 ]
机构
[1] Shenyang Jianzhu Univ, Sch Mech Engn, Shenyang 110168, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 12期
基金
中国国家自然科学基金;
关键词
defect detection; YOLOv8n; C2f_DWR module; C2f_DRB module; inner-IoU loss function; feature fusion;
D O I
10.3390/app14125325
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The traditional detection methods of steel surface defects have some problems, such as a lack of feature extraction ability, sluggish detection speed, and subpar detection performance. In this paper, a YOLOv8-based DDI-YOLO model is suggested for effective steel surface defect detection. First, on the Backbone network, the extended residual module (DWR) is fused with the C2f module to obtain C2f_DWR, and the two-step approach is used to carry out the effective extraction of multiscale contextual information, and then fusing feature maps formed from the multiscale receptive fields to enhance the capacity for feature extraction. Also based on the above, an extended heavy parameter module (DRB) is added to the structure of C2f_DWR to make up for the lack of C2f's ability to capture small-scale pattern defects between training to enhance the training fluency of the model. Finally, the Inner-IoU loss function is employed to enhance the regression accuracy and training speed of the model. The experimental results show that the detection of DDI-YOLO on the NEU-DET dataset improves the mAP by 2.4%, the accuracy by 3.3%, and the FPS by 59 frames/s compared with the original YOLOv8n.Therefore, this paper's proposed model has a superior mAP, accuracy, and FPS in identifying surface defects in steel.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Road target detection in harsh environments based on improved YOLOv8n
    Xu, Minjun
    Sun, Jiayu
    Zhang, Junpeng
    Yan, Mengxue
    Cao, Wen
    Hou, Alin
    Journal of Electronic Imaging, 2024, 33 (05)
  • [32] Strip Steel Surface Defect Detection Based on Improved YOLOv3 Algorithm
    Li W.-G.
    Ye X.
    Zhao Y.-T.
    Wang W.-B.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (07): : 1284 - 1292
  • [33] An Improved YOLOv5 Algorithm for Steel Surface Defect Detection
    Li Shaoxiong
    Shi Zaifeng
    Kong Fanning
    Wang Ruoqi
    Luo Tao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [34] Improved Model for Table-Line Detection Based on YOLOv8n
    Wei, Chao
    Qian, Chunyu
    Huang, Qipeng
    Du, Linxuan
    Yang, Zhe
    Computer Engineering and Applications, 2025, 61 (02) : 112 - 123
  • [35] Improved YOLOv8n object detection of fragrant pears
    Tan H.
    Ma W.
    Tian Y.
    Zhang Q.
    Li M.
    Li M.
    Yang X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (11): : 178 - 185
  • [36] Field cabbage detection and positioning system based on improved YOLOv8n
    Jiang, Ping
    Qi, Aolin
    Zhong, Jiao
    Luo, Yahui
    Hu, Wenwu
    Shi, Yixin
    Liu, Tianyu
    PLANT METHODS, 2024, 20 (01)
  • [37] Lightweight Algorithm for Rail Fastener Status Detection Based on YOLOv8n
    Zhang, Xingsheng
    Shen, Benlan
    Li, Jincheng
    Ruan, Jiuhong
    ELECTRONICS, 2024, 13 (17)
  • [38] An Improved YOLOv8 Algorithm for Rail Surface Defect Detection
    Wang, Yan
    Zhang, Kehua
    Wang, Ling
    Wu, Lintong
    IEEE ACCESS, 2024, 12 : 44984 - 44997
  • [39] Improved YOLOv8 Algorithm for Industrial Surface Defect Detection
    Su, Jia
    Jia, Ze
    Qin, Yichang
    Zhang, Jianyan
    Computer Engineering and Applications, 2024, 60 (14) : 187 - 196
  • [40] Small Target Detection Algorithm for Aerial Images Based on YOLOv8n
    Qi, Xiangming
    Yan, Pingping
    Jiang, Liang
    Computer Engineering and Applications, 2024, 60 (24) : 200 - 210