Orthogonal graph regularized non-negative matrix factorization under sparse constraints for clustering

被引:1
|
作者
Chen, Yasong [1 ]
Qu, Guangwei [1 ]
Zhao, Junjian [1 ]
机构
[1] TianGong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
关键词
NMF; Manifold; Sparse constraints; Clustering; Orthogonality; ALGORITHMS; PARTS;
D O I
10.1016/j.eswa.2024.123797
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The standard NMF algorithm is not suitable for sampling data from low -dimensional manifolds embedded in high -dimensional environmental spaces, as the geometric information hidden in feature manifolds and sample manifolds is rarely learned. In order to obtain better clustering performance based on NMF, manifold and orthogonal constraint, a new type of model named Orthogonal Graph regularized Non -negative Matrix Factorization model under Sparse Constraints (OGNMFSC) is proposed. Firstly, this type of model constructs a nearest neighbor graph to encode the geometric information of the data space, in order to obtain more discriminative ability by preserving the structure of the graph. Secondly, this type of model adds orthogonal constraints to achieve better local representation and significantly reduce the inconsistency between the original matrix and the basis vectors. Thirdly, by adding sparse constraints to obtain a sparser representation matrix, the clustering performance of the model can be improved. The main conclusion of this paper is that two effective algorithms have been generated to solve the model, which not only provides theoretical convergence proof for these two algorithms, but also demonstrates significant clustering performance in experiments compared to classical models such as K -means, PCA, NMF, Semi-NMF, NMFSC, ONMF, GNMF, NeNMF.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Graph regularized discriminative non-negative matrix factorization for face recognition
    Xianzhong Long
    Hongtao Lu
    Yong Peng
    Wenbin Li
    Multimedia Tools and Applications, 2014, 72 : 2679 - 2699
  • [22] Graph regularized discriminative non-negative matrix factorization for face recognition
    Long, Xianzhong
    Lu, Hongtao
    Peng, Yong
    Li, Wenbin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 72 (03) : 2679 - 2699
  • [23] A novel regularized asymmetric non-negative matrix factorization for text clustering
    Aghdam, Mehdi Hosseinzadeh
    Zanjani, Mohammad Daryaie
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (06)
  • [24] Non-Negative Matrix Factorization With Dual Constraints for Image Clustering
    Yang, Zuyuan
    Zhang, Yu
    Xiang, Yong
    Yan, Wei
    Xie, Shengli
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (07): : 2524 - 2533
  • [25] Graph regularized projective non-negative matrix factorization for face recognition
    Yu, Z. (yuzz@jlu.edu.cn), 2013, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09):
  • [26] Robust automated graph regularized discriminative non-negative matrix factorization
    Xianzhong Long
    Jian Xiong
    Lei Chen
    Multimedia Tools and Applications, 2021, 80 : 14867 - 14886
  • [27] Online Graph Regularized Non-negative Matrix Factorization for Streamming Data
    Liu, Fudong
    Guan, Naiyang
    Tang, Yuhua
    2014 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2014, : 191 - 196
  • [28] PROJECTIVE NON-NEGATIVE MATRIX FACTORIZATION FOR UNSUPERVISED GRAPH CLUSTERING
    Bampis, Christos G.
    Maragos, Petros
    Bovik, Alan C.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1254 - 1258
  • [29] Non-negative Matrix Factorization with Pairwise Constraints and Graph Laplacian
    He, Yang-Cheng
    Lu, Hong-Tao
    Huang, Lei
    Shi, Xiao-Hua
    NEURAL PROCESSING LETTERS, 2015, 42 (01) : 167 - 185
  • [30] Non-negative Matrix Factorization with Pairwise Constraints and Graph Laplacian
    Yang-Cheng He
    Hong-Tao Lu
    Lei Huang
    Xiao-Hua Shi
    Neural Processing Letters, 2015, 42 : 167 - 185