Second-Order Optimality Conditions for Interval-Valued Optimization Problem

被引:0
|
作者
Rastogi, Sachin [1 ]
Iqbal, Akhlad [2 ]
机构
[1] Mahatma Jyotiba Phule Rohilkhand Univ, Hindu Coll, Dept Math, Bareilly 243003, UP, India
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, UP, India
关键词
Second-order optimality conditions; LU and C-R-type order relation; square slack variable method; KKT optimality conditions;
D O I
10.1142/S0217595924500209
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we discuss the second-order KKT-type optimality conditions for interval-valued optimization problem. To derive second-order necessary and sufficient conditions, we use two different methodologies: square slack variable method and the theory of geometric cone optimality conditions for interval-valued objective functions. Furthermore, we discuss two types of order relations LU and center-radius (C-R). To show the validity of our results, we have demonstrated some nontriv ial examples.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Optimality and duality in constrained interval-valued optimization
    Do Van Luu
    Tran Thi Mai
    [J]. 4OR, 2018, 16 : 311 - 337
  • [22] Second-order optimality conditions in set-valued optimization via asymptotic derivatives
    Khan, Akhtar A.
    Tammer, Christiane
    [J]. OPTIMIZATION, 2013, 62 (06) : 743 - 758
  • [23] Second-Order Optimality Conditions for Strict Efficiency of Constrained Set-Valued Optimization
    Li, S. J.
    Zhu, S. K.
    Li, X. B.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 155 (02) : 534 - 557
  • [24] Second-Order Optimality Conditions for Strict Efficiency of Constrained Set-Valued Optimization
    S. J. Li
    S. K. Zhu
    X. B. Li
    [J]. Journal of Optimization Theory and Applications, 2012, 155 : 534 - 557
  • [25] Second-order Karush–Kuhn–Tucker optimality conditions for set-valued optimization
    S. K. Zhu
    S. J. Li
    K. L. Teo
    [J]. Journal of Global Optimization, 2014, 58 : 673 - 692
  • [26] Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative
    Y. Chalco-Cano
    W. A. Lodwick
    A. Rufian-Lizana
    [J]. Fuzzy Optimization and Decision Making, 2013, 12 : 305 - 322
  • [27] Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative
    Chalco-Cano, Y.
    Lodwick, W. A.
    Rufian-Lizana, A.
    [J]. FUZZY OPTIMIZATION AND DECISION MAKING, 2013, 12 (03) : 305 - 322
  • [28] Second-order optimality conditions in multiobjective optimization problems
    Aghezzaf, B
    Hachimi, M
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 102 (01) : 37 - 50
  • [29] On Second-Order Optimality Conditions for Vector Optimization: Addendum
    María C. Maciel
    Sandra A. Santos
    Graciela N. Sottosanto
    [J]. Journal of Optimization Theory and Applications, 2021, 188 : 597 - 602
  • [30] OPTIMALITY CONDITIONS AND DUALITY RELATIONS IN NONSMOOTH FRACTIONAL INTERVAL-VALUED MULTIOBJECTIVE OPTIMIZATION
    Hung N.H.
    van Tuyen N.
    [J]. Applied Set-Valued Analysis and Optimization, 2023, 5 (01): : 31 - 47