Identification of sleep phenotypes in COPD using machine learning-based cluster analysis

被引:0
|
作者
Razjouyan, Javad [1 ,2 ,3 ,4 ]
Hanania, Nicola A. [4 ]
Nowakowski, Sara [1 ,2 ,3 ,4 ]
Agrawal, Ritwick [4 ,5 ]
Sharafkhaneh, Amir [4 ,5 ,6 ]
机构
[1] Michael E DeBakey VA Med Ctr, Ctr Innovat Qual Effectiveness & Safety, VAs Hlth Serv Res & Dev Serv HSR &D, Houston, TX 77030 USA
[2] VA Off Res & Dev, Big Data Scientist Training Enhancement Program, Washington, DC 20420 USA
[3] Michael E DeBakey VA Med Ctr, VA Qual Scholars Coordinating Ctr, IQuESt, Houston, TX 77030 USA
[4] Baylor Coll Med, Dept Med, Sect Pulm & Crit Care Med, Houston, TX 77030 USA
[5] Michael E DeBakey VA Med Ctr, Crit Care & Sleep Med Sect, Pulm, Houston, TX 77030 USA
[6] 2002 Holcombe Blvd, Houston, TX 77030 USA
关键词
COPD; Sleep disorders; Phenotypes; Comorbidities; OBSTRUCTIVE PULMONARY-DISEASE; DISORDERS; MORTALITY; POLYSOMNOGRAPHY;
D O I
10.1016/j.rmed.2024.107641
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Disturbed sleep in patients with COPD impact quality of life and predict adverse outcomes. Research question: To identify distinct phenotypic clusters of patients with COPD using objective sleep parameters and evaluate the associations between clusters and all-cause mortality to inform risk stratification. Study design and methods: A longitudinal observational cohort study using nationwide Veterans Health Administration data of patients with COPD investigated for sleep disorders. Sleep parameters were extracted from polysomnography physician interpretation using a validated natural language processing algorithm. We performed cluster analysis using an unsupervised machine learning algorithm (K-means) and examined the association between clusters and mortality using Cox regression analysis, adjusted for potential confounders, and visualized with Kaplan-Meier estimates. Results: Among 9992 patients with COPD and a clinically indicated baseline polysomnogram, we identified five distinct clusters based on age, comorbidity burden and sleep parameters. Overall mortality increased from 9.4 % to 42 % and short -term mortality (<5.3 years) ranged from 3.4 % to 24.3 % in Cluster 1 to 5. In Cluster 1 younger age, in 5 high comorbidity burden and in the other three clusters, total sleep time and sleep efficiency had significant associations with mortality. Interpretation: We identified five distinct clinical clusters and highlighted the significant association between total sleep time and sleep efficiency on mortality. The identified clusters highlight the importance of objective sleep parameters in determining mortality risk and phenotypic characterization in this population.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Innovations in Stroke Identification: A Machine Learning-Based Diagnostic Model Using Neuroimages
    Saleem, Muhammad Asim
    Javeed, Ashir
    Akarathanawat, Wasan
    Chutinet, Aurauma
    Suwanwela, Nijasri Charnnarong
    Asdornwised, Widhyakorn
    Chaitusaney, Surachai
    Deelertpaiboon, Sunchai
    Srisiri, Wattanasak
    Benjapolakul, Watit
    Kaewplung, Pasu
    IEEE ACCESS, 2024, 12 : 35754 - 35764
  • [32] EMPIRICAL COMPARISON AND ANALYSIS OF MACHINE LEARNING-BASED APPROACHES FOR DRUGGABLE PROTEIN IDENTIFICATION
    Shoombuatong, Watshara
    Schaduangrat, Nalini
    Nikom, Jaru
    EXCLI JOURNAL, 2023, 22 : 915 - 927
  • [33] Use of cluster analysis to define COPD phenotypes
    Weatherall, M.
    Shirtcliffe, P.
    Travers, J.
    Beasley, R.
    EUROPEAN RESPIRATORY JOURNAL, 2010, 36 (03) : 472 - 474
  • [34] Machine Learning-Based Source Identification in Sewer Networks
    Salem, Aly K.
    Abokifa, Ahmed A.
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2023, 149 (08)
  • [35] Machine learning-based identification of patients with a cardiovascular defect
    Louridi, Nabaouia
    Douzi, Samira
    El Ouahidi, Bouabid
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [36] Machine Learning-based Whitefly Feature Identification and Counting
    Yao, Kai-Chao
    Fu, Shih-Feng
    Huang, Wei-Tzer
    Wu, Cheng-Chun
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2022, 66 (01)
  • [37] Machine Learning-Based Approach for the Gambling Problem Identification
    Kozak, Jan
    Probierz, Barbara
    Juszczuk, Przemyslaw
    Dziczkowski, Grzegorz
    Jach, Tomasz
    Stefanski, Piotr
    Glowania, Szymon
    Hrabia, Anita
    Wolek, Gabriel
    Sznapka, Wojciech
    Swierk, Lukasz
    Joniec, Natalia
    VIETNAM JOURNAL OF COMPUTER SCIENCE, 2025,
  • [38] Machine learning-based identification of patients with a cardiovascular defect
    Nabaouia Louridi
    Samira Douzi
    Bouabid El Ouahidi
    Journal of Big Data, 8
  • [39] Automatic glomerular identification and quantification of histological phenotypes using image analysis and machine learning
    Sheehan, Susan M.
    Korstanje, Ron
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2018, 315 (06) : F1644 - F1651
  • [40] MACHINE LEARNING-BASED CLUSTER ANALYSIS IDENTIFIES PATIENT PHENOTYPES FOR RISK OF ATRIAL ARRHYTHMIA RECURRENCE FOLLOWING CATHETER ABLATION IN PAROXYSMAL ATRIAL FIBRILLATION
    Younes, Hadi
    Marrouche, Nassir F.
    Feng, Han
    Noujaim, Charbel
    Mekhael, Mario
    Chouman, Nour
    Assaf, Ala Yaser Mohammad
    Bidaoui, Ghassan
    Chamoun, Nadia
    Bsoul, Mayana
    Rao, Swati
    Lim, Chan
    Polo, Francisco Tirado
    El Hajjar, Abdel Hadi
    Dagher, Lilas
    McCraney, Scott
    Shamaileh, Ghaith
    Dahl, Alexander
    Tsakiris, Eli
    Kreidieh, Omar
    McGarvey, Cecile
    Mahnkopf, Christian
    El Hajjar, Abdel Hadi
    Donnellan, Eoin
    Pandey, Amitabh C.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 5 - 5