Identification of sleep phenotypes in COPD using machine learning-based cluster analysis

被引:0
|
作者
Razjouyan, Javad [1 ,2 ,3 ,4 ]
Hanania, Nicola A. [4 ]
Nowakowski, Sara [1 ,2 ,3 ,4 ]
Agrawal, Ritwick [4 ,5 ]
Sharafkhaneh, Amir [4 ,5 ,6 ]
机构
[1] Michael E DeBakey VA Med Ctr, Ctr Innovat Qual Effectiveness & Safety, VAs Hlth Serv Res & Dev Serv HSR &D, Houston, TX 77030 USA
[2] VA Off Res & Dev, Big Data Scientist Training Enhancement Program, Washington, DC 20420 USA
[3] Michael E DeBakey VA Med Ctr, VA Qual Scholars Coordinating Ctr, IQuESt, Houston, TX 77030 USA
[4] Baylor Coll Med, Dept Med, Sect Pulm & Crit Care Med, Houston, TX 77030 USA
[5] Michael E DeBakey VA Med Ctr, Crit Care & Sleep Med Sect, Pulm, Houston, TX 77030 USA
[6] 2002 Holcombe Blvd, Houston, TX 77030 USA
关键词
COPD; Sleep disorders; Phenotypes; Comorbidities; OBSTRUCTIVE PULMONARY-DISEASE; DISORDERS; MORTALITY; POLYSOMNOGRAPHY;
D O I
10.1016/j.rmed.2024.107641
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Disturbed sleep in patients with COPD impact quality of life and predict adverse outcomes. Research question: To identify distinct phenotypic clusters of patients with COPD using objective sleep parameters and evaluate the associations between clusters and all-cause mortality to inform risk stratification. Study design and methods: A longitudinal observational cohort study using nationwide Veterans Health Administration data of patients with COPD investigated for sleep disorders. Sleep parameters were extracted from polysomnography physician interpretation using a validated natural language processing algorithm. We performed cluster analysis using an unsupervised machine learning algorithm (K-means) and examined the association between clusters and mortality using Cox regression analysis, adjusted for potential confounders, and visualized with Kaplan-Meier estimates. Results: Among 9992 patients with COPD and a clinically indicated baseline polysomnogram, we identified five distinct clusters based on age, comorbidity burden and sleep parameters. Overall mortality increased from 9.4 % to 42 % and short -term mortality (<5.3 years) ranged from 3.4 % to 24.3 % in Cluster 1 to 5. In Cluster 1 younger age, in 5 high comorbidity burden and in the other three clusters, total sleep time and sleep efficiency had significant associations with mortality. Interpretation: We identified five distinct clinical clusters and highlighted the significant association between total sleep time and sleep efficiency on mortality. The identified clusters highlight the importance of objective sleep parameters in determining mortality risk and phenotypic characterization in this population.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Identification of clinical phenotypes in patients with and without COPD using cluster analysis
    Divo, Miguel
    Casanova, Ciro
    Marin, Jose M.
    Celli, Bartolome
    de Torres, Juan Pablo
    Polverino, Francesca
    Baz, Rebeca
    Cordoba-Lanus, Elizabeth
    Pinto-Plata, Victor
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2016, 48
  • [2] Unsupervised machine learning cluster analysis to identification EVAR patients clinical phenotypes based on radiomics
    Wang, Yonggang
    Zhou, Min
    Ding, Yong
    Li, Xu
    Xie, Tianchen
    Zhou, Zhenyu
    Fu, Weiguo
    Shi, Zhenyu
    [J]. VASCULAR, 2024,
  • [3] COPD phenotypes and machine learning cluster analysis: A systematic review and future research agenda
    Nikolaou, Vasilis
    Massaro, Sebastiano
    Fakhimi, Masoud
    Stergioulas, Lampros
    Price, David
    [J]. RESPIRATORY MEDICINE, 2020, 171
  • [4] The inspiratory and expiratory CT based COPD phenotypes using cluster analysis
    Matsuo, Yumiko
    Ogawa, Emiko
    Yamazaki, Akio
    Kawashima, Satoru
    Uchida, Yasuki
    Nakagawa, Hiroaki
    Kinose, Daisuke
    Yamaguchi, Masafumi
    Nakano, Yasutaka
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2020, 56
  • [5] Identification of clinical phenotypes using cluster analyses in COPD patients
    Corlateanu, Alexandru
    Scutaru, Eugenia
    Rusu, Doina
    Corlateanu, Olga
    Covantev, Serghei
    Botnaru, Victor
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2019, 54
  • [6] Phenomapping of Patients with Primary Breast Cancer Using Machine Learning-Based Unsupervised Cluster Analysis
    Ferro, Sara
    Bottigliengo, Daniele
    Gregori, Dario
    Fabricio, Aline S. C.
    Gion, Massimo
    Baldi, Ileana
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (04):
  • [7] Identification of asthma phenotypes using cluster analysis
    Freitas, Patricia D.
    Xavier, Rafaella F.
    da Silva, Simone T. C.
    Carvalho-Pinto, Regina M.
    Stelmach, Rafael
    Cukier, Alberto
    Martins, Milton A.
    Carvalho, Celso R. F.
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2018, 52
  • [8] Machine Learning-Based Identification of Lithic Microdebitage
    Eberl, Markus
    Bell, Charreau S.
    Spencer-Smith, Jesse
    Raj, Mark
    Sarubbi, Amanda
    Johnson, Phyllis S.
    Rieth, Amy E.
    Chaudhry, Umang
    Estrada Aguila, Rebecca
    McBride, Michael
    [J]. ADVANCES IN ARCHAEOLOGICAL PRACTICE, 2023, 11 (02): : 152 - 163
  • [9] Machine learning-based identification of craniosynostosis in newborns
    Sabeti, Malihe
    Boostani, Reza
    Moradi, Ehsan
    Shakoor, Mohammad Hossein
    [J]. MACHINE LEARNING WITH APPLICATIONS, 2022, 8
  • [10] IDENTIFICATION OF CLINICAL PHENOTYPES IN OBSTRUCTIVE SLEEP APNEA (OSA) USING CLUSTER ANALYSIS: A POPULATION STUDY
    Adams, R.
    Appleton, S.
    Vincent, A.
    Vakulin, A.
    Antic, N.
    Mcevoy, D.
    Catcheside, P.
    Martin, S.
    Grant, J.
    Taylor, A.
    Wittert, G.
    [J]. RESPIROLOGY, 2014, 19 : 53 - 53