On an Anisotropic Logistic Equation

被引:0
|
作者
Gasinski, Leszek [1 ]
Papageorgiou, Nikolaos S. [2 ,3 ]
机构
[1] Univ Natl Educ Commiss, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
anisotropic operator; equidiffusive logistic reaction; uniqueness; minimal positive solution; anisotropic regularity; DEGENERATE ELLIPTIC EQUATION; POSITIVE SOLUTIONS;
D O I
10.3390/math12091280
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlinear Dirichlet problem driven by the (p(z),q)-Laplacian and with a logistic reaction of the equidiffusive type. Under a nonlinearity condition on a quotient map, we show existence and uniqueness of positive solutions and the result is global in parameter lambda. If the monotonicity condition on the quotient map is not true, we can no longer guarantee uniqueness, but we can show the existence of a minimal solution u(lambda)* and establish the monotonicity of the map lambda bar right arrow u(lambda)* and its asymptotic behaviour as the parameter lambda decreases to the critical value (lambda(1)) over cap (q) > 0 (the principal eigenvalue of (-Delta(q),W-0(1,q)(Omega))).
引用
收藏
页数:13
相关论文
共 50 条
  • [21] MASTER EQUATION FOR THE LOGISTIC MAP
    FOX, RF
    PHYSICAL REVIEW A, 1990, 42 (04): : 1946 - 1953
  • [22] FUZZY LOGISTIC DIFFERENCE EQUATION
    Khastan, A.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2018, 15 (07): : 55 - 66
  • [23] A LOGISTIC EQUATION WITH NONLOCAL INTERACTIONS
    Caffarelli, Luis
    Dipierro, Serena
    Valdinoci, Enrico
    KINETIC AND RELATED MODELS, 2017, 10 (01) : 141 - 170
  • [24] HILL COEFFICIENTS AND THE LOGISTIC EQUATION
    BARLOW, R
    BLAKE, JF
    TRENDS IN PHARMACOLOGICAL SCIENCES, 1989, 10 (11) : 440 - 441
  • [25] Analytical Solution of the Logistic Equation
    International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 7 (04):
  • [26] Generalized logistic equation on Networks
    Elbetch, Bilel
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 911 - 934
  • [27] Dynamics of the logistic equation with delay
    Kashchenko, S. A.
    MATHEMATICAL NOTES, 2015, 98 (1-2) : 98 - 110
  • [28] ON A PERIODIC NEUTRAL LOGISTIC EQUATION
    GOPALSAMY, K
    HE, XZ
    WEN, LZ
    GLASGOW MATHEMATICAL JOURNAL, 1991, 33 : 281 - 286
  • [29] A STOCHASTIC LOGISTIC DIFFUSION EQUATION
    MARCUS, R
    MATHEMATICAL BIOSCIENCES, 1982, 62 (02) : 281 - 294
  • [30] Logistic equation of arbitrary order
    Grabowski, Franciszek
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (16) : 3081 - 3093