Prediction of Optimal Solvers for Sparse Linear Systems Using Deep Learning

被引:0
|
作者
Funk, Yannick [1 ]
Goetz, Markus [2 ,3 ]
Anzt, Hartwig [3 ,4 ]
机构
[1] Karlsruhe Inst Technol KIT, Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Helmholtz AI, Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Steinbuch Ctr Comp SCC, Karlsruhe, Germany
[4] Univ Tennessee, Innovat Comp Lab ICL, Knoxville, TN USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Solving sparse linear systems is a key task in a number of computational problems, such as data analysis and simulations, and majorly determines overall execution time. Choosing a suitable iterative solver algorithm, however, can significantly improve time-to-completion. We present a deep learning approach designed to predict the optimal iterative solver for a given sparse linear problem. For this, we detail useful linear system features to drive the prediction process, the metrics we use to quantify the iterative solvers' time-to-approximation performance and a comprehensive experimental evaluation of the prediction quality of the neural network. Using a hyperparameter optimization and an ablation study on the SuiteSparse matrix collection we have inferred the importance of distinct features, achieving a top1 classification accuracy of 60%.
引用
收藏
页码:14 / 24
页数:11
相关论文
共 50 条
  • [31] Sparse Bayesian learning for beamforming using sparse linear arrays
    Nannuru, Santosh
    Koochakzadeh, Ali
    Gemba, Kay L.
    Pal, Piya
    Gerstoft, Peter
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 144 (05): : 2719 - 2729
  • [32] Assessing sparse triangular linear system solvers on GPUs
    Erguiz, Daniel
    Dufrechou, Ernesto
    Ezzatti, Pablo
    2017 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS (SBAC-PADW), 2017, : 37 - 42
  • [33] REORDERING STRATEGY FOR BLOCKING OPTIMIZATION IN SPARSE LINEAR SOLVERS
    Pichon, Gregoire
    Faverge, Mathieu
    Ramet, Pierre
    Roman, Jean
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (01) : 226 - 248
  • [34] Near-Optimal Sparse Allreduce for Distributed Deep Learning
    Li, Shigang
    Hoefler, Torsten
    PPOPP'22: PROCEEDINGS OF THE 27TH ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING, 2022, : 135 - 149
  • [35] GPU-resident sparse direct linear solvers for alternating current optimal power flow analysis
    Swirydowicz, Kasia
    Koukpaizan, Nicholson
    Ribizel, Tobias
    Goebel, Fritz
    Abhyankar, Shrirang
    Anzt, Hartwig
    Peles, Slaven
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 155
  • [36] Automatic Selection of Sparse Triangular Linear System Solvers on GPUs through Machine Learning Techniques
    Dufrechou, Ernesto
    Ezzatti, Pablo
    Quintana-Orti, Enrique S.
    2019 31ST INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2019), 2019, : 41 - 47
  • [38] Multi disease-prediction framework using hybrid deep learning: an optimal prediction model
    Ampavathi, Anusha
    Saradhi, T. Vijaya
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2021, 24 (10) : 1146 - 1168
  • [39] Linear optical response of finite systems using multishift linear system solvers
    Huebener, Hannes
    Giustino, Feliciano
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (04):
  • [40] Adaptive sparse linear solvers for implicit CFD using Newton-Krylov algorithms
    McInnes, L
    Norris, B
    Bhowmick, S
    Raghavan, P
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1024 - 1028