Prediction of Optimal Solvers for Sparse Linear Systems Using Deep Learning

被引:0
|
作者
Funk, Yannick [1 ]
Goetz, Markus [2 ,3 ]
Anzt, Hartwig [3 ,4 ]
机构
[1] Karlsruhe Inst Technol KIT, Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Helmholtz AI, Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Steinbuch Ctr Comp SCC, Karlsruhe, Germany
[4] Univ Tennessee, Innovat Comp Lab ICL, Knoxville, TN USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Solving sparse linear systems is a key task in a number of computational problems, such as data analysis and simulations, and majorly determines overall execution time. Choosing a suitable iterative solver algorithm, however, can significantly improve time-to-completion. We present a deep learning approach designed to predict the optimal iterative solver for a given sparse linear problem. For this, we detail useful linear system features to drive the prediction process, the metrics we use to quantify the iterative solvers' time-to-approximation performance and a comprehensive experimental evaluation of the prediction quality of the neural network. Using a hyperparameter optimization and an ablation study on the SuiteSparse matrix collection we have inferred the importance of distinct features, achieving a top1 classification accuracy of 60%.
引用
收藏
页码:14 / 24
页数:11
相关论文
共 50 条
  • [1] Optimal solvers for linear systems with fractional powers of sparse SPD matrices
    Harizanov, S.
    Lazarov, R.
    Margenov, S.
    Marinov, P.
    Vutov, Y.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (05)
  • [2] Parallel linear systems solvers: Sparse iterative methods
    VanderVorst, HA
    HIGH PERFORMANCE COMPUTING IN FLUID DYNAMICS, 1996, 3 : 173 - 200
  • [3] Parallel frontal solvers for large sparse linear systems
    Scott, JA
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2003, 29 (04): : 395 - 417
  • [4] Optimizing sparse RFI prediction using deep learning
    Kerrigan, Joshua
    La Plante, Paul
    Kohn, Saul
    Pober, Jonathan C.
    Aguirre, James
    Abdurashidova, Zara
    Alexander, Paul
    Ali, Zaki S.
    Balfour, Yanga
    Beardsley, Adam P.
    Bernardi, Gianni
    Bowman, Judd D.
    Bradley, Richard F.
    Burba, Jacob
    Carilli, Chris L.
    Cheng, Carina
    DeBoer, David R.
    Dexter, Matt
    Acedo, Eloy de Lera
    Dillon, Joshua S.
    Estrada, Julia
    Ewall-Wice, Aaron
    Fagnoni, Nicolas
    Fritz, Randall
    Furlanetto, Steve R.
    Glendenning, Brian
    Greig, Bradley
    Grobbelaar, Jasper
    Gorthi, Deepthi
    Halday, Ziyaad
    Hazelton, Bryna J.
    Hickish, Jack
    Jacobs, Daniel C.
    Julius, Austin
    Kern, Nicholas S.
    Kittiwisit, Piyanat
    Kolopanis, Matthew
    Lanman, Adam
    Lekalake, Telalo
    Liu, Adrian
    MacMahon, David
    Malan, Lourence
    Malgas, Cresshim
    Maree, Matthys
    Martinot, Zachary E.
    Matsetela, Eunice
    Mesinger, Andrei
    Molewa, Mathakane
    Morales, Miguel F.
    Mosiane, Tshegofalang
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (02) : 2605 - 2615
  • [5] Optimizing sparse RFI prediction using deep learning
    Kerrigan, Joshua
    Plante, Paul La
    Kohn, Saul
    Pober, Jonathan C.
    Aguirre, James
    Abdurashidova, Zara
    Alexander, Paul
    Ali, Zaki S.
    Balfour, Yanga
    Beardsley, Adam P.
    Bernardi, Gianni
    Bowman, Judd D.
    Bradley, Richard F.
    Burba, Jacob
    Carilli, Chris L.
    Cheng, Carina
    DeBoer, David R.
    Dexter, Matt
    de Lera Acedo, Eloy
    Dillon, Joshua S.
    Estrada, Julia
    Ewall-Wice, Aaron
    Fagnoni, Nicolas
    Fritz, Randall
    Furlanetto, Steve R.
    Glendenning, Brian
    Greig, Bradley
    Grobbelaar, Jasper
    Gorthi, Deepthi
    Halday, Ziyaad
    Hazelton, Bryna J.
    Hickish, Jack
    Jacobs, Daniel C.
    Julius, Austin
    Kern, Nick
    Kittiwisit, Piyanat
    Kolopanis, Matthew
    Lanman, Adam
    Lekalake, Telalo
    Liu, Adrian
    MacMahon, David
    Malan, Lourence
    Malgas, Cresshim
    Maree, Matthys
    Martinot, Zachary E.
    Matsetela, Eunice
    Mesinger, Andrei
    Molewa, Mathakane
    Morales, Miguel F.
    Mosiane, Tshegofalang
    arXiv, 2019,
  • [6] Parallel iterative solvers for sparse linear systems in circuit simulation
    Basermann, A
    Jaekel, U
    Nordhausen, M
    Hachiya, K
    FUTURE GENERATION COMPUTER SYSTEMS, 2005, 21 (08) : 1275 - 1284
  • [7] Parallel iterative solvers for sparse linear systems in circuit simulation
    Basermann, A
    Jaekel, U
    Hachiya, K
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2002, 2004, 5 : 235 - 239
  • [8] Performance impact of precision reduction in sparse linear systems solvers
    Zounon M.
    Higham N.J.
    Lucas C.
    Tisseur F.
    PeerJ Computer Science, 2022, 8
  • [9] Performance impact of precision reduction in sparse linear systems solvers
    Zounon, Mawussi
    Higham, Nicholas J.
    Lucas, Craig
    Tisseur, Francoise
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [10] On using reinforcement learning to solve sparse linear systems
    Kuefler, Erik
    Chen, Tzu-Yi
    COMPUTATIONAL SCIENCE - ICCS 2008, PT 1, 2008, 5101 : 955 - 964