A data-driven approach to mapping multidimensional poverty at residential block level in Mexico

被引:0
|
作者
Zea-Ortiz, Marivel [1 ]
Vera, Pablo [1 ]
Salas, Joaquin [1 ,4 ]
Manduchi, Roberto [3 ]
Villasenor, Elio [1 ]
Figueroa, Alejandra [2 ]
Suarez, Ranyart R. [2 ]
机构
[1] Inst Politecn Nacl, CICATA Queretaro, Cerro Blanco 141, Santiago de Queretaro 76090, Queretaro, Mexico
[2] Inst Nacl Geog & Estadist, Lab Ciencia Datos & Metodos Modernos Prod Informac, Heroe Nacozari 2301, Aguascalientes 20276, Aguascalientes, Mexico
[3] Univ Calif Santa Cruz, Dept Comp Sci & Engn, 1156 High St, Santa Cruz, CA 95064 USA
[4] MIT, Earth Signals & Syst Grp, Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Human poverty assessment; Sustainable development goals; Computational intelligence for sustainability; SATELLITE;
D O I
10.1007/s10668-024-05230-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate, inexpensive and granular human poverty assessments are critical for data-driven policy decision-making. This research proposes a novel approach to computing poverty scores utilizing multispectral satellite images and indices calculated from census reference values. We show how this approach can leverage standard and sparse survey-based multidimensional poverty assessments at the municipal level to develop a deep learning architecture to obtain poverty scores at the residential block level. This method has the distinctive feature that the obtained inference corresponds to Multidimensional Measurement of Poverty generated by CONEVAL, the Mexican agency responsible for measuring poverty. We provide a reliable alternative to survey-based approaches with an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document} of 0.802 +/- 0.022\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.802\pm 0.022$$\end{document} for the lack of housing quality and spaces dimension. A convolutional neural network trained on multispectral satellite images and the lack of housing quality and spaces dimension, which is regressed from census reference variables corresponding to lack of water, electricity, sewage, concrete floor, toilet and occupancy level obtains an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document} of 0.753. These results represent a significant step forward in including machine learning techniques to provide reliable information at reduced costs and a higher spatiotemporal frequency than traditional person-to-person surveys.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] A Data-Driven Approach to Assessing and Improving Stochastic Residential Load Modeling for District-Level Simulations and PV Integration
    Claeys, Robbert
    Protopapadaki, Christina
    Saelens, Dirk
    Desmet, Jan
    2020 INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2020,
  • [32] Data-driven approach to predicting the energy performance of residential buildings using minimal input data
    Seo, Jihyun
    Kim, Seohoon
    Lee, Sungjin
    Jeong, Hakgeun
    Kim, Taeyeon
    Kim, Jonghun
    BUILDING AND ENVIRONMENT, 2022, 214
  • [33] Data-driven approach to predicting the energy performance of residential buildings using minimal input data
    Seo, Jihyun
    Kim, Seohoon
    Lee, Sungjin
    Jeong, Hakgeun
    Kim, Taeyeon
    Kim, Jonghun
    Building and Environment, 2022, 214
  • [34] Association between multidimensional poverty and urban spatial network design: Comparison between theory-driven and data-driven lenses
    Gachanja, James
    Shuyu, Lei
    Adero, Nashon
    APPLIED GEOGRAPHY, 2025, 178
  • [35] Innovation: A data-driven approach
    Kusiak, Andrew
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2009, 122 (01) : 440 - 448
  • [36] Approach to data-driven learning
    Markov, Z.
    International Workshop on Fundamentals of Artificial Intelligence Research, 1991,
  • [37] AN APPROACH TO DATA-DRIVEN LEARNING
    MARKOV, Z
    LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1991, 535 : 127 - 140
  • [38] A data-driven approach to forecasting ground-level ozone concentration
    Marvin, Dario
    Nespoli, Lorenzo
    Strepparava, Davide
    Medici, Vasco
    INTERNATIONAL JOURNAL OF FORECASTING, 2022, 38 (03) : 970 - 987
  • [39] A Data-driven approach to renewable energy source planning at regional level
    Surmonte, Francesco
    Perna, Umberto
    Scala, Antonio
    Rubino, Alessandro
    Facchini, Angelo
    ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2021, 16 (11-12) : 1064 - 1075
  • [40] A hybrid data-driven approach to analyze the drivers of lake level dynamics
    Somogyvari, Mark
    Scherer, Dieter
    Bart, Frederik
    Fehrenbach, Ute
    Okujeni, Akpona
    Krueger, Tobias
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2024, 28 (18) : 4331 - 4348