Developing a flame-retardant flexible composite phase change material to realize both temperature control and thermal runaway prevention for lithium-ion battery pack

被引:14
|
作者
Qiu, Haobin [1 ]
Zhang, Zhengguo [1 ]
Ling, Ziye [1 ,2 ]
Fang, Xiaoming [1 ]
机构
[1] South China Univ Technol, Minist Educ, Sch Chem & Chem Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Guangzhou 510640, Peoples R China
[2] South China Inst Collaborat Innovat, Dongguan 523808, Peoples R China
关键词
Lithium-ion batteries; Temperature control; Thermal runaway prevention; Flexible composite phase change materials; Flame retardant coatings; AMMONIUM POLYPHOSPHATE; EXPANDABLE GRAPHITE; COATINGS;
D O I
10.1016/j.applthermaleng.2024.123301
中图分类号
O414.1 [热力学];
学科分类号
摘要
Exploring a facile solution to controlling the operating temperature within the range between -25 degrees C and 60 degrees C and the temperature difference between batteries less than 5 degrees C as well as preventing thermal runaway for battery packs, is significant, but remains challenging. Herein, a flame-retardant flexible composite phase change material was developed and applied for both the temperature control and thermal runaway prevention of battery packs. Specifically, a flame-retardant coating comprising 70 % polydimethylsiloxane as a binder was first investigated to determine the optimal mass ratio of 3:1 for the blend of expandable graphite and ammonium polyphosphate. The flame-retardant flexible composite phase change material was then produced by applying the optimal coating at a loading of 15 % on a flexible composite phase change material that was obtained from incorporating an ethylene propylene diene monomer with a mass fraction of 40 % into an 80 % paraffin/20 % expanded graphite composite. The flame-retardant flexible CPCM not only exhibited the highest flame-retardant rating of V-0, a significant latent heat capacity and good thermal reliability, but also demonstrated improved thermal conductivity and enhanced mechanical properties in tensile strength, bending, and compression as compared with the uncoated counterpart. The flame-retardant flexible composite phase change material achieves better temperature control performance for a battery pack compared to the material without a flame-retardant coating. Moreover, the flame-retardant flexible composite phase change material effectively prevents thermal runaway propagation within a battery pack. These favorable characteristics demonstrate the considerable potential of the flame-retardant flexible CPCM for battery thermal management in electric vehicles.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Investigation on the polyethylene glycol based composite phase change materials with coating flame-retardant for battery thermal management
    Wang, Tingyu
    Deng, Jian
    Du, Jiexin
    Yang, Wensheng
    Zeng, Yueyu
    Wu, Tingting
    Rao, Zhonghao
    Li, Xinxi
    CASE STUDIES IN THERMAL ENGINEERING, 2025, 65
  • [42] Experimental study on the effect of phase change material on thermal runaway characteristics of lithium-ion battery under different triggering methods
    Mei, Jie
    Shi, Guoqing
    Li, Qing
    Liu, He
    Wang, Zhi
    JOURNAL OF ENERGY STORAGE, 2024, 75
  • [44] Paraffin/SiC as a Novel Composite Phase-Change Material for a Lithium-Ion Battery Thermal Management System
    Kang, Wei
    Zhao, Yiqiang
    Jia, Xueheng
    Hao, Lin
    Dang, Leping
    Wei, Hongyuan
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2021, 27 (01) : 55 - 63
  • [45] Paraffin/SiC as a Novel Composite Phase-Change Material for a Lithium-Ion Battery Thermal Management System
    Wei Kang
    Yiqiang Zhao
    Xueheng Jia
    Lin Hao
    Leping Dang
    Hongyuan Wei
    Transactions of Tianjin University, 2021, 27 : 55 - 63
  • [46] Performance improvement of a thermal management system for Lithium-ion power battery pack by the combination of phase change material and heat pipe
    Gao, Chen
    Sun, Kai
    Song, KeWei
    Zhang, Kun
    Hou, QingZhi
    JOURNAL OF ENERGY STORAGE, 2024, 82
  • [47] Paraffin/SiC as a Novel Composite Phase-Change Material for a Lithium-Ion Battery Thermal Management System
    Wei Kang
    Yiqiang Zhao
    Xueheng Jia
    Lin Hao
    Leping Dang
    Hongyuan Wei
    Transactions of Tianjin University, 2021, (01) : 55 - 63
  • [48] Influence of mechanical vibration on composite phase change material based thermal management system for lithium-ion battery
    Zhang, Wencan
    Li, Xingyao
    Wu, Weixiong
    Huang, Jianfeng
    JOURNAL OF ENERGY STORAGE, 2022, 54
  • [49] Porous-Material-Based Composite Phase Change Materials for a Lithium-Ion Battery Thermal Management System
    Fang, Min
    Zhou, Jianduo
    Fei, Hua
    Yang, Kai
    He, Ruiqiang
    ENERGY & FUELS, 2022, 36 (08) : 4153 - 4173
  • [50] Thermal Management Optimization of Prismatic Lithium-Ion Battery Using Phase Change Material
    Ponangi, Babu Rao
    Shreyas, S.
    Shashwath, D. S.
    SAE INTERNATIONAL JOURNAL OF PASSENGER VEHICLE SYSTEMS, 2022, 15 (02): : 133 - 147