ON A SPATIALLY INHOMOGENEOUS NONLINEAR FOKKER-PLANCK EQUATION: CAUCHY PROBLEM AND DIFFUSION ASYMPTOTICS

被引:1
|
作者
Anceschi, Francesca [1 ]
Zhu, Yuzhe [2 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Ancona, Italy
[2] Ecole Normale Super PSL Univ, Dept Math & Applicat, Paris, France
来源
ANALYSIS & PDE | 2024年 / 17卷 / 02期
关键词
nonlinear kinetic Fokker-Planck equation; well-posedness; regularity; diffusion asymptotics; LANDAU EQUATION; HARNACK INEQUALITY; ROUGH; COEFFICIENTS; CONVERGENCE; EXISTENCE; LIMIT;
D O I
10.2140/apde.2024.17.379
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the Cauchy problem and the diffusion asymptotics for a spatially inhomogeneous kinetic model associated to a nonlinear Fokker-Planck operator. We derive the global well-posedness result with instantaneous smoothness effect, when the initial data lies below a Maxwellian. The proof relies on the hypoelliptic analog of classical parabolic theory, as well as a positivity -spreading result based on the Harnack inequality and barrier function methods. Moreover, the scaled equation leads to the fast diffusion flow under the low field limit. The relative phi -entropy method enables us to see the connection between the overdamped dynamics of the nonlinearly coupled kinetic model and the correlated fast diffusion. The global -in -time quantitative diffusion asymptotics is then derived by combining entropic hypocoercivity, relative phi -entropy, and barrier function methods.
引用
收藏
页码:379 / 420
页数:45
相关论文
共 50 条
  • [21] CRITICAL RELAXATION OF A NONLINEAR FOKKER-PLANCK EQUATION
    YAHATA, H
    PROGRESS OF THEORETICAL PHYSICS, 1974, 52 (03): : 871 - 885
  • [22] A Nonlinear Filter Based on Fokker-Planck Equation
    Kumar, Mrinal
    Chakravorty, Suman
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 3136 - 3141
  • [23] Gelfand-Shilov and Gevrey smoothing effect of the Cauchy problem for Fokker-Planck equation
    Li, Hao-Guang
    Liu, Jing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (01) : 222 - 249
  • [24] FOKKER-PLANCK EQUATION
    DESLOGE, EA
    AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) : 237 - &
  • [25] FOKKER-PLANCK ASYMPTOTICS AND THE RICCI FLOW
    Carfora, M.
    ASYMPTOTIC METHODS IN NONLINEAR WAVE PHENOMENA: IN HONOR OF THE 65TH BIRTHDAY OF ANTONIO GRECO, 2007, : 35 - 46
  • [26] Inhomogeneous Fokker-Planck equation from framework of Kaniadakis statistics
    Gomez, Ignacio S.
    da Costa, Bruno G.
    dos Santos, Maike A. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [27] Uniform stability for a spatially discrete, subdiffusive Fokker-Planck equation
    McLean, William
    Mustapha, Kassem
    NUMERICAL ALGORITHMS, 2022, 89 (04) : 1441 - 1463
  • [28] Fick's law and Fokker-Planck equation in inhomogeneous environments
    Sattin, F.
    PHYSICS LETTERS A, 2008, 372 (22) : 3941 - 3945
  • [29] NONLINEAR FOKKER-PLANCK EQUATION AS AN ASYMPTOTIC REPRESENTATION OF MASTER EQUATION
    HORSTHEMKE, W
    BRENIG, L
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1977, 27 (04): : 341 - 348
  • [30] Propagator for the Fokker-Planck equation with an arbitrary diffusion coefficient
    Lee, Chern
    Zhu, Ka-Di
    Chen, Ji-Gen
    PHYSICAL REVIEW E, 2013, 88 (05):