Birthweight Range Prediction and Classification: A Machine Learning-Based Sustainable Approach

被引:4
|
作者
Alabbad, Dina A. [1 ]
Ajibi, Shahad Y. [1 ]
Alotaibi, Raghad B. [1 ]
Alsqer, Noura K. [1 ]
Alqahtani, Rahaf A. [1 ]
Felemban, Noor M. [1 ]
Rahman, Atta [2 ]
Aljameel, Sumayh S. [2 ]
Ahmed, Mohammed Imran Basheer [1 ]
Youldash, Mustafa M. [1 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Engn, POB 1982, Dammam 31441, Saudi Arabia
[2] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Sci, POB 1982, Dammam 31441, Saudi Arabia
来源
关键词
machine learning; sustainable approach; birthweight range; classification; fetal weight;
D O I
10.3390/make6020036
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An accurate prediction of fetal birth weight is crucial in ensuring safe delivery without health complications for the mother and baby. The uncertainty surrounding the fetus's birth situation, including its weight range, can lead to significant risks for both mother and baby. As there is a standard birth weight range, if the fetus exceeds or falls below this range, it can result in considerable health problems. Although ultrasound imaging is commonly used to predict fetal weight, it does not always provide accurate readings, which may lead to unnecessary decisions such as early delivery and cesarian section. Besides that, no supporting system is available to predict the weight range in Saudi Arabia. Therefore, leveraging the available technologies to build a system that can serve as a second opinion for doctors and health professionals is essential. Machine learning (ML) offers significant advantages to numerous fields and can address various issues. As such, this study aims to utilize ML techniques to build a predictive model to predict the birthweight range of infants into low, normal, or high. For this purpose, two datasets were used: one from King Fahd University Hospital (KFHU), Saudi Arabia, and another publicly available dataset from the Institute of Electrical and Electronics Engineers (IEEE) data port. KFUH's best result was obtained with the Extra Trees model, achieving an accuracy, precision, recall, and F1-score of 98%, with a specificity of 99%. On the other hand, using the Random Forest model, the IEEE dataset attained an accuracy, precision, recall, and F1-score of 96%, respectively, with a specificity of 98%. These results suggest that the proposed ML system can provide reliable predictions, which could be of significant value for doctors and health professionals in Saudi Arabia.
引用
收藏
页码:770 / 788
页数:19
相关论文
共 50 条
  • [31] Machine Learning-based Prediction of Test Power
    Dhotre, Harshad
    Eggersgluess, Stephan
    Chakrabarty, Krishnendu
    Drechsler, Rolf
    2019 IEEE EUROPEAN TEST SYMPOSIUM (ETS), 2019,
  • [32] Machine Learning-based Water Potability Prediction
    Alnaqeb, Reem
    Alrashdi, Fatema
    Alketbi, Khuloud
    Ismail, Heba
    2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [33] A MACHINE LEARNING-BASED TOURIST PATH PREDICTION
    Zheng, Siwen
    Liu, Yu
    Ouyang, Zhenchao
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 38 - 42
  • [34] Machine Learning-Based Prediction of Air Quality
    Liang, Yun-Chia
    Maimury, Yona
    Chen, Angela Hsiang-Ling
    Juarez, Josue Rodolfo Cuevas
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 17
  • [35] Practical Machine Learning-Based Sepsis Prediction
    Pettinati, Michael J.
    Chen, Gengbo
    Rajput, Kuldeep Singh
    Selvaraj, Nandakumar
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 4986 - 4991
  • [36] A machine learning-based approach for product maintenance prediction with reliability information conversion
    Zhang H.
    He X.
    Yan W.
    Jiang Z.
    Zhu S.
    Autonomous Intelligent Systems, 2022, 2 (01):
  • [37] How to approach machine learning-based prediction of drug/compound–target interactions
    Heval Atas Guvenilir
    Tunca Doğan
    Journal of Cheminformatics, 15
  • [38] Improving the Accuracy of Oncology Diagnosis: A Machine Learning-Based Approach to Cancer Prediction
    Cabanillas-Carbonell, Michael
    Zapata-Paulini, Joselyn
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (11) : 102 - 122
  • [39] CUSTOMER CHURN PREDICTION IN THE BANKING SECTOR USING MACHINE LEARNING-BASED CLASSIFICATION MODELS
    Tran H.
    Le N.
    Nguyen V.-H.
    Interdisciplinary Journal of Information, Knowledge, and Management, 2023, 18 : 87 - 105
  • [40] Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach
    Feng, De-Cheng
    Liu, Zhen-Tao
    Wang, Xiao-Dan
    Chen, Yin
    Chang, Jia-Qi
    Wei, Dong-Fang
    Jiang, Zhong-Ming
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 230