Stabilizing Nonlinear ODEs With Diffusive Actuator Dynamics

被引:0
|
作者
Irscheid, Abdurrahman [1 ]
Gehring, Nicole [2 ]
Deutscher, Joachim [1 ,3 ]
Rudolph, Joachim
机构
[1] Saarland Univ, Chair Syst Theory & Control Engn, D-66123 Saarbrucken, Germany
[2] Johannes Kepler Univ Linz, Inst Automat Control & Control Syst Technol, A-4040 Linz, Austria
[3] Ulm Univ, Inst Measurement Control & Microtechnol, D-89081 Ulm, Germany
来源
关键词
Backstepping; State feedback; Nonlinear dynamical systems; Kernel; Asymptotic stability; Actuators; Stability criteria; Parabolic systems; nonlinear PDE-ODE systems; state feedback; backstepping; Cauchy problem;
D O I
10.1109/LCSYS.2024.3406924
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter presents a design of stabilizing controllers for a cascaded system consisting of a boundary actuated parabolic PDE and nonlinear dynamics at the unactuated boundary. Although the considered PDE is linear, the nonlinearity of the ODE constitutes a significant challenge. In order to solve this problem, it is shown that the classical backstepping transformation of Volterra type directly results from the solution of a Cauchy problem. This new perspective enables the derivation of a controller for the nonlinear setup, where a Volterra integral representation does not exist. Specifically, the solution of an appropriate linear Cauchy problem yields a novel state transformation facilitating the design of a stabilizing state feedback. This control law is shown to ensure asymptotic closed-loop stability of the origin. An efficient implementation of the controller is proposed and demonstrated for an example.
引用
收藏
页码:1259 / 1264
页数:6
相关论文
共 50 条
  • [31] Global stabilization for nonlinear uncertain systems with unmodeled actuator dynamics
    Bartolini, G
    Pisano, A
    Usai, E
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (11) : 1826 - 1832
  • [32] EFFECTS OF ACTUATOR IMPACT ON THE NONLINEAR DYNAMICS OF A VALVELESS PUMPING SYSTEM
    Yang, Tian-Shiang
    Wang, Chi-Chung
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2011, 11 (03) : 591 - 624
  • [33] LPV Control of Systems via Nonlinear Actuator Dynamics Mapping
    Teczely, Zoltan
    Fazekas, Csaba
    Kiss, Balint
    2024 28TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS, MMAR 2024, 2024, : 205 - 210
  • [34] Control of active suspension system considering nonlinear actuator dynamics
    Kilicaslan, Sinan
    NONLINEAR DYNAMICS, 2018, 91 (02) : 1383 - 1394
  • [35] Diffusive pattern formations in three-species nonlinear dynamics of cancer
    S. Issa
    B. Tamko. Mbopda
    G. Richard Kol
    C. Bertrand Tabi
    H. P. Ekobena Fouda
    The European Physical Journal Plus, 138
  • [36] Nonlinear Dynamic Inversion with Actuator Dynamics: An Incremental Control Perspective
    Steffensen, Rasmus
    Steinert, Agnes
    Smeur, Ewoud J. J.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2023, 46 (04) : 709 - 717
  • [37] Nonlinear dynamic inversion with generalized actuator dynamics: Performance and stability
    Liu, Yue
    Steinert, Agnes
    Hong, Haichao
    Li, Hangxu
    Hu, Shiqiang
    Aerospace Science and Technology, 2025, 162
  • [38] Diffusive pattern formations in three-species nonlinear dynamics of cancer
    Issa, S.
    Mbopda, B. Tamko.
    Kol, G. Richard
    Tabi, C. Bertrand
    Fouda, H. P. Ekobena
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (06):
  • [39] Convection and reaction in a diffusive boundary layer in a porous medium: Nonlinear dynamics
    Andres, Jeanne Therese H.
    Cardoso, Silvana S. S.
    CHAOS, 2012, 22 (03)
  • [40] Controlling Diffusive Network Dynamics using a Stochastically-Mobile Sensor-Actuator Platform
    Vosughi, Amirkhosro
    Xue, Mengran
    Roy, Sandip
    IFAC PAPERSONLINE, 2019, 52 (20): : 247 - 252