Long-time dynamics for the energy critical heat equation in R5

被引:1
|
作者
Li, Zaizheng [1 ]
Wei, Juncheng [2 ]
Zhang, Qidi [3 ]
Zhou, Yifu [4 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[3] Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Energy critical heat equation; Long-time dynamics; Gluing method; HARMONIC MAP FLOW; ASYMPTOTIC-BEHAVIOR; THRESHOLD SOLUTIONS; PARABOLIC EQUATION; GLOBAL-SOLUTIONS; BLOW-UP; DECAY; SINGULARITY; THEOREMS;
D O I
10.1016/j.na.2024.113594
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the long-time behavior of global solutions to the energy critical heat equation in R-5 {partial derivative(t)u = Delta u + vertical bar u vertical bar(4/3)u in R(5)x(t(0),infinity), u(center dot, t(0)) = u(0) in R-5. For t(0) sufficiently large, we show the existence of positive solutions for a class of initial value u(0)(x) similar to vertical bar x vertical bar(-gamma) as vertical bar x vertical bar -> infinity with gamma > 3/2 such that the global solutions behave asymptotically parallel to u(center dot, t)parallel to(L infinity(R5)) similar to {t(-3(2-gamma)/2) if 3/2 < gamma < 2 (ln t)(-3) if gamma = 2 for t > t(0), 1 if gamma > 2 which is slower than the self-similar time decay t(-3/4). These rates are inspired by Fila and King (2012, Conjecture 1.1).
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Long-Time Dynamics of the Perturbed Schrödinger Equation on Negatively Curved Surfaces
    Gabriel Rivière
    Annales Henri Poincaré, 2016, 17 : 1955 - 1999
  • [32] Potential energy landscape and long-time dynamics in a simple model glass
    Angelani, L
    Parisi, G
    Ruocco, G
    Viliani, G
    PHYSICAL REVIEW E, 2000, 61 (02) : 1681 - 1691
  • [33] LONG-TIME DYNAMICS OF RUBBER NETWORKS
    RONCA, G
    POLYMER, 1979, 20 (11) : 1321 - 1323
  • [34] MODELS FOR LONG-TIME PROTEIN DYNAMICS
    PERICO, A
    GUENZA, M
    MORMINO, M
    JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 1994, A31 : 1009 - 1016
  • [35] Long-Time Asymptotics for the Nonlocal MKdV Equation
    He, Feng-Jing
    Fan, En-Gui
    Xu, Jian
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (05) : 475 - 488
  • [36] ON THE LONG-TIME BEHAVIOR OF A GENERALIZED KDV EQUATION
    SIDI, A
    SULEM, C
    SULEM, PL
    ACTA APPLICANDAE MATHEMATICAE, 1986, 7 (01) : 35 - 47
  • [37] On the Long-time Behaviour of the Quasilinear Parabolic Equation
    Geredeli, P. G.
    Khanmamedov, A. Kh.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1987 - 1990
  • [38] Long-time asymptotics for the short pulse equation
    Xu, Jian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (08) : 3494 - 3532
  • [39] Long-Time Asymptotics for the Nonlocal MKdV Equation
    何丰敬
    范恩贵
    徐建
    Communications in Theoretical Physics, 2019, 71 (05) : 475 - 488
  • [40] THE "GOOD" BOUSSINESQ EQUATION: LONG-TIME ASYMPTOTICS
    Charlier, Christophe
    Lenells, Jonatan
    Wang, Deng-Shan
    ANALYSIS & PDE, 2023, 16 (06): : 1351 - 1388