A Deep Multiresolution Representation Framework for Pansharpening
被引:4
|
作者:
Xie, Guangxu
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Peoples R ChinaYunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Peoples R China
Xie, Guangxu
[1
]
Nie, Rencan
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Peoples R China
Southeast Univ, Sch Automat, Nanjing 210096, Peoples R ChinaYunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Peoples R China
Nie, Rencan
[1
,2
]
Cao, Jinde
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
Yonsei Univ, Yonsei Frontier Lab, Seoul 03722, South KoreaYunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Peoples R China
Cao, Jinde
[3
,4
]
Li, He
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Peoples R ChinaYunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Peoples R China
Li, He
[1
]
Li, Jintao
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Peoples R ChinaYunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Peoples R China
Li, Jintao
[1
]
机构:
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Peoples R China
[2] Southeast Univ, Sch Automat, Nanjing 210096, Peoples R China
[3] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[4] Yonsei Univ, Yonsei Frontier Lab, Seoul 03722, South Korea
Cross-domain fusion;
information aggregation;
multiresolution representation;
pansharpening;
FUSION;
MODULATION;
NETWORK;
D O I:
10.1109/TGRS.2024.3394533
中图分类号:
P3 [地球物理学];
P59 [地球化学];
学科分类号:
0708 ;
070902 ;
摘要:
Pansharpening aims at merging the spectral information from a low-resolution multispectral (LRMS) image with the spatial details from a panchromatic (PAN) image to produce a high-resolution multispectral (HRMS) image. Regrettably, existing techniques tend to concentrate on utilizing spectral and spatial information at a single resolution to reconstruct HRMS images, which leads to a deficiency in fully exploiting the semantic information from different resolution levels. In consideration of the aforementioned issues, we proposed a deep multiresolution representation framework for pansharpening, termed DMR-Pan. With the idea of maintaining high-resolution (HR) and low-resolution (LR) representations, we proposed an effective strategy for the extraction of multiresolution semantics, where a PAN branch and an LRMS branch operate in parallel to not only retain HR spatial details and spectral information but also extract multilevel semantics from different resolutions. Through cross-modality and cross-resolution guidance mechanisms, the extracted multiresolution semantics are aggregated with minimal information loss. Finally, a novel query fusion mechanism is introduced to capture the latent interdependency between dual modalities with cross-modality channel-group attention (CCGA), thereby maximizing complementary semantics and significantly improving the fusion ability of the framework. Rigorous experimentation conducted on multiple datasets illustrates that our DMR-Pan surpasses comparable techniques both in qualitative and quantitative assessments.
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, 28 Xianning West Rd, Xian, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, 28 Xianning West Rd, Xian, Shaanxi, Peoples R China
Fei, Rongrong
Zhang, Jiang-She
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, 28 Xianning West Rd, Xian, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, 28 Xianning West Rd, Xian, Shaanxi, Peoples R China
Zhang, Jiang-She
Liu, Junmin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, 28 Xianning West Rd, Xian, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, 28 Xianning West Rd, Xian, Shaanxi, Peoples R China
Liu, Junmin
Du, Fang
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, 28 Xianning West Rd, Xian, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, 28 Xianning West Rd, Xian, Shaanxi, Peoples R China
Du, Fang
Chang, Peiju
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, 28 Xianning West Rd, Xian, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, 28 Xianning West Rd, Xian, Shaanxi, Peoples R China
Chang, Peiju
Hu, Junying
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, 28 Xianning West Rd, Xian, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, 28 Xianning West Rd, Xian, Shaanxi, Peoples R China
机构:
Zhejiang Lab, Big Data Intelligence Res Ctr, Hangzhou 311100, Peoples R ChinaZhejiang Lab, Big Data Intelligence Res Ctr, Hangzhou 311100, Peoples R China
Wang, Chao
Huang, Jiahui
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310058, Peoples R ChinaZhejiang Lab, Big Data Intelligence Res Ctr, Hangzhou 311100, Peoples R China
Huang, Jiahui
Wang, Yongheng
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Lab, Big Data Intelligence Res Ctr, Hangzhou 311100, Peoples R ChinaZhejiang Lab, Big Data Intelligence Res Ctr, Hangzhou 311100, Peoples R China
Wang, Yongheng
Lin, Zhengxuan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310058, Peoples R ChinaZhejiang Lab, Big Data Intelligence Res Ctr, Hangzhou 311100, Peoples R China
Lin, Zhengxuan
Jin, Xiongnan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Lab, Big Data Intelligence Res Ctr, Hangzhou 311100, Peoples R ChinaZhejiang Lab, Big Data Intelligence Res Ctr, Hangzhou 311100, Peoples R China
Jin, Xiongnan
Jin, Xing
论文数: 0引用数: 0
h-index: 0
机构:
Hangzhou Dianzi Univ, Sch Cyberspace, Hangzhou 310018, Peoples R ChinaZhejiang Lab, Big Data Intelligence Res Ctr, Hangzhou 311100, Peoples R China
Jin, Xing
Weng, Di
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Software Technol, Hangzhou 310058, Peoples R ChinaZhejiang Lab, Big Data Intelligence Res Ctr, Hangzhou 311100, Peoples R China
Weng, Di
Wu, Yingcai
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310058, Peoples R ChinaZhejiang Lab, Big Data Intelligence Res Ctr, Hangzhou 311100, Peoples R China