Design of the Particle Size and Morphology of Hard Carbon Anode Materials for Sodium-Ion Batteries Through Hydrothermal Carbonization

被引:6
|
作者
Lakienko, Grigorii P. [1 ]
Bobyleva, Zoya V. [2 ]
Gorshkov, Vladislav S. [1 ]
Zybina, Aleksandra I. [3 ]
Drozhzhin, Oleg A. [2 ]
Abakumov, Artem M. [1 ]
Antipov, Evgeny V. [1 ,2 ]
机构
[1] Skolkovo Inst Sci & Technol, Skolkovo 143026, Russia
[2] Lomonosov Moscow State Univ, Dept Chem, Moscow 119991, Russia
[3] Lomonosov Moscow State Univ, MIPT, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
sodium-ion batteries; hard carbon; hydrothermal carbonization; anode materials; STORAGE; SPHERES; ACID; TEMPERATURE; PERFORMANCE; GLUCOSE; BIOMASS;
D O I
10.1149/1945-7111/ad51ad
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
With sodium-ion batteries (SIBs) finding widespread application, the demand grows for hard carbon, the most popular anode material for SIBs. Hydrothermal carbonization facilitates the production of hard carbon with desired characteristics from various sources. Despite the considerable volume of literature addressing this subject, there is a notable absence of investigations elucidating the relationship between synthesis conditions and the electrochemical characteristics of the product. Here we study systematically the influence of hydrothermal carbonization parameters on hard carbon characteristics and emphasize the potential of hard carbon as an anode material for SIBs. The initial Coulombic efficiency (ICE) is significantly affected by the particle size of the glucose-derived hard carbon, which, in turn, depends on glucose concentration in the initial solution, pH, and stirring regime. By optimizing the hydrothermal carbonization parameters, the ICE up to 91% and a good reversible capacity of similar to 300 mAh g-1 in a half cell are achieved. Full cells with Na3(VO)2(PO4)2F cathode material demonstrate ICE of about 80% and reversible capacity of up to 100 mAh g-1 cath. Considering the effective performance of pouch-cell SIB prototypes based on Na3(VO)2(PO4)2F and hard carbon, hydrothermal carbonization of glucose yields hard carbon with the necessary characteristics required for its successful application in SIBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism
    Yu, Zhuo-Er
    Lyu, Yingchun
    Wang, Yeting
    Xu, Shuyin
    Cheng, Hongyu
    Mu, Xiaoyang
    Chu, Jiaqi
    Chen, Riming
    Liu, Yang
    Guo, Bingkun
    CHEMICAL COMMUNICATIONS, 2020, 56 (05) : 778 - 781
  • [32] Pomegranate Peel-Derived Hard Carbons as Anode Materials for Sodium-Ion Batteries
    Wu, Qijie
    Shu, Kewei
    Zhao, Long
    Zhang, Jianming
    MOLECULES, 2024, 29 (19):
  • [33] A review on anode materials for lithium/sodium-ion batteries
    Prajapati, Abhimanyu Kumar
    Bhatnagar, Ashish
    JOURNAL OF ENERGY CHEMISTRY, 2023, 83 : 509 - 540
  • [34] Advanced Nanostructured Anode Materials for Sodium-Ion Batteries
    Wang, Qidi
    Zhao, Chenglong
    Lu, Yaxiang
    Li, Yunming
    Zheng, Yuheng
    Qi, Yuruo
    Rong, Xiaohui
    Jiang, Liwei
    Qi, Xinguo
    Shao, Yuanjun
    Pan, Du
    Li, Baohua
    Hu, Yong-Sheng
    Chen, Liquan
    SMALL, 2017, 13 (42)
  • [35] Recent Advances in Anode Materials for Sodium-Ion Batteries
    Bai, Xue
    Wu, Nannan
    Yu, Gengchen
    Li, Tao
    INORGANICS, 2023, 11 (07)
  • [36] A review on anode materials for lithium/sodium-ion batteries
    Abhimanyu Kumar Prajapati
    Ashish Bhatnagar
    Journal of Energy Chemistry, 2023, 83 (08) : 509 - 540
  • [37] Computational Screening of Anode Materials for Sodium-Ion Batteries
    Yu, Seungho
    Kim, Sang-Ok
    Kim, Hyung-Seok
    Choi, Wonchang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) : A1915 - A1919
  • [38] Anode materials for fast charging sodium-ion batteries
    He, Zidong
    Huang, Yujie
    Liu, Huaxin
    Geng, Zhenglei
    Li, Yujin
    Li, Simin
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    NANO ENERGY, 2024, 129
  • [39] Advanced Anode Materials for Rechargeable Sodium-Ion Batteries
    Qiao, Shuangyan
    Zhou, Qianwen
    Ma, Meng
    Liu, Hua Kun
    Dou, Shi Xue
    Chong, Shaokun
    ACS NANO, 2023, 17 (12) : 11220 - 11252
  • [40] Research progress on carbon-based anode materials for sodium-ion batteries
    Li, Guoqing
    Ma, Hailing
    Tong, Yao
    Wang, Hongxu
    Luo, Yang
    Ang, Edison Huixiang
    Bohm, Sivasambu
    Ibrahim, Ahmed A.
    Umar, Ahmad
    JOURNAL OF ENERGY STORAGE, 2025, 107