Design of the Particle Size and Morphology of Hard Carbon Anode Materials for Sodium-Ion Batteries Through Hydrothermal Carbonization

被引:6
|
作者
Lakienko, Grigorii P. [1 ]
Bobyleva, Zoya V. [2 ]
Gorshkov, Vladislav S. [1 ]
Zybina, Aleksandra I. [3 ]
Drozhzhin, Oleg A. [2 ]
Abakumov, Artem M. [1 ]
Antipov, Evgeny V. [1 ,2 ]
机构
[1] Skolkovo Inst Sci & Technol, Skolkovo 143026, Russia
[2] Lomonosov Moscow State Univ, Dept Chem, Moscow 119991, Russia
[3] Lomonosov Moscow State Univ, MIPT, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
sodium-ion batteries; hard carbon; hydrothermal carbonization; anode materials; STORAGE; SPHERES; ACID; TEMPERATURE; PERFORMANCE; GLUCOSE; BIOMASS;
D O I
10.1149/1945-7111/ad51ad
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
With sodium-ion batteries (SIBs) finding widespread application, the demand grows for hard carbon, the most popular anode material for SIBs. Hydrothermal carbonization facilitates the production of hard carbon with desired characteristics from various sources. Despite the considerable volume of literature addressing this subject, there is a notable absence of investigations elucidating the relationship between synthesis conditions and the electrochemical characteristics of the product. Here we study systematically the influence of hydrothermal carbonization parameters on hard carbon characteristics and emphasize the potential of hard carbon as an anode material for SIBs. The initial Coulombic efficiency (ICE) is significantly affected by the particle size of the glucose-derived hard carbon, which, in turn, depends on glucose concentration in the initial solution, pH, and stirring regime. By optimizing the hydrothermal carbonization parameters, the ICE up to 91% and a good reversible capacity of similar to 300 mAh g-1 in a half cell are achieved. Full cells with Na3(VO)2(PO4)2F cathode material demonstrate ICE of about 80% and reversible capacity of up to 100 mAh g-1 cath. Considering the effective performance of pouch-cell SIB prototypes based on Na3(VO)2(PO4)2F and hard carbon, hydrothermal carbonization of glucose yields hard carbon with the necessary characteristics required for its successful application in SIBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hard carbon anode materials for sodium-ion batteries
    El Moctar, Ismaila
    Ni, Qiao
    Bai, Ying
    Wu, Feng
    Wu, Chuan
    FUNCTIONAL MATERIALS LETTERS, 2018, 11 (06)
  • [2] Unveiling pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries
    Bobyleva, Zoia V.
    Drozhzhin, Oleg A.
    Dosaev, Kirill A.
    Kamiyama, Azusa
    Ryazantsev, Sergey V.
    Komaba, Shinichi
    Antipov, Evgeny V.
    ELECTROCHIMICA ACTA, 2020, 354 (354)
  • [3] Recent progress on hard carbon and other anode materials for sodium-ion batteries
    Shafiee, Farah Nabilah
    Noor, Siti Aminah Mohd
    Abdah, Muhammad Amirul Aizat Mohd
    Jamal, Siti Hasnawati
    Samsuri, Alinda
    HELIYON, 2024, 10 (08)
  • [4] A review of hard carbon anode materials for sodium-ion batteries and their environmental assessment
    Peters, Jens F.
    Abdelbaky, Mohammad
    Baumann, Manuel
    Weil, Marcel
    MATERIAUX & TECHNIQUES, 2020, 107 (05):
  • [5] Hard Carbon Derived from Straw as Anode Materials for Sodium-ion Batteries
    Zhang, Hua-zhi
    Chen, Chao
    Xu, Hui
    Yang, Li-wen
    Chen, Jian
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (11):
  • [6] Carbon Anode Materials for Advanced Sodium-Ion Batteries
    Hou, Hongshuai
    Qiu, Xiaoqing
    Wei, Weifeng
    Zhang, Yun
    Ji, Xiaobo
    ADVANCED ENERGY MATERIALS, 2017, 7 (24)
  • [7] Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method
    Canbaz, Elif
    Aydin, Meral
    Demir-Cakan, Rezan
    TURKISH JOURNAL OF CHEMISTRY, 2022, 46 (02) : 356 - +
  • [8] The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries
    Tan, Suchong
    Yang, Han
    Zhang, Zhen
    Xu, Xiangyu
    Xu, Yuanyuan
    Zhou, Jian
    Zhou, Xinchi
    Pan, Zhengdao
    Rao, Xingyou
    Gu, Yudong
    Wang, Zhoulu
    Wu, Yutong
    Liu, Xiang
    Zhang, Yi
    MOLECULES, 2023, 28 (07):
  • [9] Structural design of anode materials for sodium-ion batteries
    Wang, Wanlin
    Li, Weijie
    Wang, Shun
    Miao, Zongcheng
    Liu, Hua Kun
    Chou, Shulei
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (15) : 6183 - 6205
  • [10] Hydrothermally Assisted Conversion of Switchgrass into Hard Carbon as Anode Materials for Sodium-Ion Batteries
    Li, Yilin
    Xia, Dawei
    Tao, Lei
    Xu, Zhiyuan
    Yu, Dajun
    Jin, Qing
    Lin, Feng
    Huang, Haibo
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (22) : 28461 - 28472