Nonlocal beam analysis based on the stress-driven two-phase theory

被引:0
|
作者
Pinnola, F. P. [1 ]
Vaccaro, M. S. [1 ]
Barretta, R. [1 ]
de Sciarra, F. Marotti [1 ]
机构
[1] Dept Struct Engn & Architecture, Naples, Italy
来源
CURRENT PERSPECTIVES AND NEW DIRECTIONS IN MECHANICS, MODELLING AND DESIGN OF STRUCTURAL SYSTEMS | 2022年
关键词
Biaxial bending of nano-beams; Integral elasticity; Nonlocal stress-driven model;
D O I
10.1201/9781003348450-51
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The size-dependent behaviour of elastic beams is investigated using Bernoulli-Euler kinematics. The two-phase stress-driven integral elasticity is adopted to model size effects. Biaxial bending is considered and an effective coordinate-free solution procedure is proposed. The corresponding governing equations of non-local elasticity are established and discussed. The contributed theoretical results could be useful for the implementation of procedure oriented to design and optimization of modern sensors and actuators.
引用
收藏
页码:109 / 110
页数:2
相关论文
共 50 条
  • [31] Flexibility-based stress-driven nonlocal frame element: formulation and applications
    Suchart Limkatanyu
    Worathep Sae-Long
    Hamid M. Sedighi
    Jaroon Rungamornrat
    Piti Sukontasukkul
    Hexin Zhang
    Prinya Chindaprasirt
    Engineering with Computers, 2023, 39 : 399 - 417
  • [32] On the regularity of curvature fields in stress-driven nonlocal elastic beams
    Vaccaro, Marzia Sara
    Marotti de Sciarra, Francesco
    Barretta, Raffaele
    ACTA MECHANICA, 2021, 232 (07) : 2595 - 2603
  • [33] Fracture analysis of nanobeams based on the stress-driven non-local theory of elasticity
    Vantadori, Sabrina
    Luciano, Raimondo
    Scorza, Daniela
    Darban, Hossein
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (14) : 1967 - 1976
  • [34] Random vibrations of stress-driven nonlocal beams with external damping
    Pinnola, Francesco P.
    Vaccaro, Marzia S.
    Barretta, Raffaele
    Marotti de Sciarra, Francesco
    MECCANICA, 2021, 56 (06) : 1329 - 1344
  • [35] Random vibrations of stress-driven nonlocal beams with external damping
    Francesco P. Pinnola
    Marzia S. Vaccaro
    Raffaele Barretta
    Francesco Marotti de Sciarra
    Meccanica, 2021, 56 : 1329 - 1344
  • [36] Stress-driven nonlocal and strain gradient formulations of Timoshenko nanobeams
    Oskouie, M. Faraji
    Ansari, R.
    Rouhi, H.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (08):
  • [37] Stress-driven nonlocal and strain gradient formulations of Timoshenko nanobeams
    M. Faraji Oskouie
    R. Ansari
    H. Rouhi
    The European Physical Journal Plus, 133
  • [38] Vibration analysis of stress-driven nonlocal integral model of viscoelastic axially FG nanobeams
    Fakher, Mahmood
    Behdad, Shahin
    Hosseini-Hashemi, Shahrokh
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (11):
  • [39] Bending analysis of nanoscopic beams based upon the strain-driven and stress-driven integral nonlocal strain gradient theories
    M. Faraji Oskouie
    R. Ansari
    H. Rouhi
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43
  • [40] On the regularity of curvature fields in stress-driven nonlocal elastic beams
    Marzia Sara Vaccaro
    Francesco Marotti de Sciarra
    Raffaele Barretta
    Acta Mechanica, 2021, 232 : 2595 - 2603