A dynamic spectrum access algorithm based on deep reinforcement learning with novel multi-vehicle reward functions in cognitive vehicular networks

被引:0
|
作者
Chen, Lingling [1 ,2 ]
Wang, Ziwei [1 ]
Zhao, Xiaohui [3 ]
Shen, Xuan [1 ]
He, Wei [1 ]
机构
[1] Jilin Inst Chem Technol, Coll Informat & Control Engn, Jilin 132000, Peoples R China
[2] Jilin Univ, Coll Commun Engn, Changchun 130012, Peoples R China
[3] Jilin Univ, Coll Commun Engn, Key Lab Informat Sci, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectrum access; Cognitive vehicular networks; Deep reinforcement learning (DRL); Quality of service (QoS); ALLOCATION; POWER;
D O I
10.1007/s11235-024-01188-5
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
As a revolution in the field of transportation, the demand for communication of vehicles is increasing. Therefore, how to improve the success rate of vehicle spectrum access has become a major problem to be solved. The case of a single vehicle accessing a channel was only considered in the previous research on dynamic spectrum access in cognitive vehicular networks (CVNs), and the spectrum resources could not be fully utilized. In order to fully utilize spectrum resources, a model for spectrum sharing among multiple secondary vehicles (SVs) and a primary vehicle (PV) is proposed. This model includes scenarios where multiple SVs share spectrum to maximize the average quality of service (QoS) for vehicles. And the condition is considered that the total interference generated by vehicles accessing the same channel is less than the interference threshold. In this paper, a deep Q-network method with a modified reward function (IDQN) algorithm is proposed to maximize the average QoS of PVs and SVs and improve spectrum utilization. The algorithm is designed with different reward functions according to the QoS of PVs and SVs under different situations. Finally, the proposed algorithm is compared with the deep Q-network (DQN) and Q-learning algorithms under the Python simulation platform. The average access success rate of SVs in the IDQN algorithm proposed can reach 98%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, which is improved by 18%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} compared with the Q-learning algorithm. And the convergence speed is 62.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} faster than the DQN algorithm. At the same time, the average QoS of PVs and the average QoS of SVs in the IDQN algorithm can reach 2.4, which is improved by 50%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 33%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} compared with the DQN algorithm, and improved by 60%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 140%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} compared with the Q-learning algorithm.
引用
收藏
页码:359 / 383
页数:25
相关论文
共 50 条
  • [41] Dynamic Multichannel Access Based on Deep Reinforcement Learning in Distributed Wireless Networks
    Cui, Qimei
    Zhang, Ziyuan
    Shi, Yanpeng
    Ni, Wei
    Zeng, Ming
    Zhou, Mingyu
    [J]. IEEE SYSTEMS JOURNAL, 2022, 16 (04): : 5831 - 5834
  • [42] Multi-User Dynamic Spectrum Access Based on LR-Q Deep Reinforcement Learning Network
    Li, Yuhui
    Wang, Yu
    Li, Yue
    Shen, Bin
    [J]. 2023 25TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY, ICACT, 2023, : 79 - 84
  • [43] Multi-agent deep reinforcement learning based multiple access for underwater cognitive acoustic sensor networks
    Zhang, Yuzhi
    Han, Xiang
    Bai, Ran
    Jia, Menglei
    [J]. Computers and Electrical Engineering, 2024, 120
  • [44] An effective dynamic spectrum access algorithm for multi-hop cognitive wireless networks
    Jiang, Dingde
    Wang, Yuanting
    Yao, Chunping
    Han, Yang
    [J]. COMPUTER NETWORKS, 2015, 84 : 1 - 16
  • [45] Multi-Agent Reinforcement Learning for Dynamic Spectrum Access
    Jiang, Huijuan
    Wang, Tianyu
    Wang, Shaowei
    [J]. ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [46] Dynamic Spectrum Access Algorithm Based on Game Theory in Cognitive Radio Networks
    Liu, Xiaozhu
    Zhu, Rongbo
    Jalaian, Brian
    Sun, Yongli
    [J]. MOBILE NETWORKS & APPLICATIONS, 2015, 20 (06): : 817 - 827
  • [47] Dynamic Spectrum Access Algorithm Based on Game Theory in Cognitive Radio Networks
    Xiaozhu Liu
    Rongbo Zhu
    Brian Jalaian
    Yongli Sun
    [J]. Mobile Networks and Applications, 2015, 20 : 817 - 827
  • [48] RDRL: A Recurrent Deep Reinforcement Learning Scheme for Dynamic Spectrum Access in Reconfigurable Wireless Networks
    Chen, Miaojiang
    Liu, Anfeng
    Liu, Wei
    Ota, Kaoru
    Dong, Mianxiong
    Xiong, N. Neal
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (02): : 364 - 376
  • [49] Exploring the design of reward functions in deep reinforcement learning-based vehicle velocity control algorithms
    He, Yixu
    Liu, Yang
    Yang, Lan
    Qu, Xiaobo
    [J]. TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2024, 16 (10): : 1338 - 1352
  • [50] Deep Reinforcement Learning for Dynamic Multichannel Access in Wireless Networks
    Wang, Shangxing
    Liu, Hanpeng
    Gomes, Pedro Henrique
    Krishnamachari, Bhaskar
    [J]. IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2018, 4 (02) : 257 - 265