A high order numerical scheme for a nonlinear nonlocal reaction-diffusion model arising in population theory

被引:0
|
作者
Venturino, Ezio [4 ]
Anita, Sebastian [2 ,3 ]
Mezzanotte, Domenico [4 ]
Occorsio, Donatella [1 ,5 ]
机构
[1] Univ Basilicata, Dept Math Comp Sci & Econ, Via Ateneo Lucano 10, I-85100 Potenza, Italy
[2] Alexandru Ioan Cuza Univ, Fac Math, Bd Carol 1 11, Iasi 700506, Romania
[3] Romanian Acad, Octav Mayer Inst Math, Bd Carol 1 8, Iasi 700505, Romania
[4] Univ Turin, Dept Math Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[5] CNR Natl Res Council Italy, IAC Inst Appl Comp Mauro Picone, Via P Castellino 111, I-80131 Naples, Italy
关键词
Reaction diffusion equations; Line method; Generalized Bernstein polynomials; BOUNDARY-PROBLEM; RED SQUIRREL; EQUATIONS; REPLACEMENT; COMPETITION; WAVES;
D O I
10.1016/j.cam.2024.116082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a numerical method for nonlinear equation arising in mathematical biology. It is an extension of another one recently proposed for the linear, less realistic, situation. The main novel result is the proof that the convergence of the numerical method is of order four, as to our knowledge no similar high accuracy results exist yet in the current literature for usually employed simulation schemes for nonlocal equations.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] On some reaction-diffusion systems with nonlinear diffusion arising in biology
    Feireisl, E
    Mimura, M
    Hilhorst, D
    Weidenfeld, R
    [J]. NONLINEAR PDE'S IN CONDENSED MATTER AND REACTIVE FLOWS, 2002, 569 : 115 - 125
  • [22] Model order reduction of parametrized nonlinear reaction-diffusion systems
    Grepl, Martin A.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2012, 43 : 33 - 44
  • [23] Bifurcation in a reaction-diffusion model with nonlocal delay effect and nonlinear boundary condition
    Guo, Shangjiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 289 : 236 - 278
  • [24] ON A NONLOCAL AND NONLINEAR SECOND-ORDER ANISOTROPIC REACTION-DIFFUSION MODEL WITH IN-HOMOGENEOUS NEUMANN BOUNDARY CONDITIONS
    Croitoru, Anca
    Tanase, Gabriela
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, : 75 - 88
  • [25] ANALYSIS OF A NONLINEAR DIFFERENCE SCHEME IN REACTION-DIFFUSION
    YU, GB
    MITCHELL, AR
    [J]. NUMERISCHE MATHEMATIK, 1986, 49 (05) : 511 - 527
  • [26] Numerical solution of time-fractional fourth-order reaction-diffusion model arising in composite environments
    Nikan, O.
    Tenreiro Machado, J. A.
    Golbabai, A.
    [J]. APPLIED MATHEMATICAL MODELLING, 2021, 89 : 819 - 836
  • [27] The wavelet methods to linear and nonlinear reaction-diffusion model arising in mathematical chemistry
    Mahalakshmi, M.
    Hariharan, G.
    Kannan, K.
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (09) : 2361 - 2385
  • [28] ON A NONLOCAL REACTION-DIFFUSION PROBLEM ARISING FROM THE MODELING OF PHYTOPLANKTON GROWTH
    Du, Yihong
    Hsu, Sze-Bi
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (03) : 1305 - 1333
  • [29] A Reliable Computational Scheme for Stochastic Reaction-Diffusion Nonlinear Chemical Model
    Arif, Muhammad Shoaib
    Abodayeh, Kamaleldin
    Nawaz, Yasir
    [J]. AXIOMS, 2023, 12 (05)
  • [30] Properties of Hopf bifurcation to a reaction-diffusion population model with nonlocal delayed effect
    Yan, Xiang-Ping
    Zhang, Cun-Hua
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 385 : 155 - 182