Fan Valuations and Spherical Intrinsic Volumes

被引:0
|
作者
Backman, Spencer [1 ]
Manecke, Sebastian [2 ]
Sanyal, Raman [2 ]
机构
[1] Univ Vermont, Dept Math & Stat, Burlington, VT 05401 USA
[2] Goethe Univ Frankfurt, Inst Math, Frankfurt, Germany
基金
美国国家科学基金会;
关键词
Fans; Valuations; Hyperplane arrangements; Spherical intrinsic volumes; Characteristic polynomials; Whitney numbers; Indicator functions; POLYHEDRAL CONES;
D O I
10.1007/s00026-024-00699-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize valuations on polyhedral cones to valuations on (plane) fans. For fans induced by hyperplane arrangements, we show a correspondence between rotation-invariant valuations and deletion- restriction invariants. In particular, we define a characteristic polynomial for fans in terms of spherical intrinsic volumes and show that it coincides with the usual characteristic polynomial in the case of hyperplane arrangements. This gives a simple deletion-restriction proof of a result of Klivans-Swartz. The metric projection of a cone is a piecewise-linear map, whose underlying fan prompts a generalization of spherical intrinsic volumes to indicator functions. We show that these intrinsic indicators yield valuations that separate polyhedral cones. Applied to hyperplane arrangements, this generalizes a result of Kabluchko on projection volumes.
引用
收藏
页码:1285 / 1302
页数:18
相关论文
共 50 条
  • [41] The intrinsic structure of spherical particles of opal
    I. A. Karpov
    É. N. Samarov
    V. M. Masalov
    S. I. Bozhko
    G. A. Emel’chenko
    Physics of the Solid State, 2005, 47 : 347 - 351
  • [42] The spherical completion of normed vector spaces over fields with valuations of arbitrary rank
    Schörner, E
    Ultrametric Functional Analysis, 2005, 384 : 299 - 307
  • [43] ON THE MAGNITUDE AND INTRINSIC VOLUMES OF A CONVEX BODY IN EUCLIDEAN SPACE
    Meckes, Mark W.
    MATHEMATIKA, 2020, 66 (02) : 343 - 355
  • [44] INTRINSIC VOLUMES AND F-VECTORS OF RANDOM POLYTOPES
    BARANY, I
    MATHEMATISCHE ANNALEN, 1989, 285 (04) : 671 - 699
  • [45] From Steiner Formulas for Cones to Concentration of Intrinsic Volumes
    Michael B. McCoy
    Joel A. Tropp
    Discrete & Computational Geometry, 2014, 51 : 926 - 963
  • [46] From Steiner Formulas for Cones to Concentration of Intrinsic Volumes
    McCoy, Michael B.
    Tropp, Joel A.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 51 (04) : 926 - 963
  • [47] Intrinsic volumes of symmetric cones and applications in convex programming
    Amelunxen, Dennis
    Buergisser, Peter
    MATHEMATICAL PROGRAMMING, 2015, 149 (1-2) : 105 - 130
  • [48] INTRINSIC VOLUMES AND GAUSSIAN POLYTOPES: THE MISSING PIECE OF THE JIGSAW
    Barany, Imre
    Thaele, Christoph
    DOCUMENTA MATHEMATICA, 2017, 22 : 1323 - 1335
  • [49] Random ball-polyhedra and inequalities for intrinsic volumes
    Paouris, Grigoris
    Pivovarov, Peter
    MONATSHEFTE FUR MATHEMATIK, 2017, 182 (03): : 709 - 729
  • [50] Intrinsic volumes of symmetric cones and applications in convex programming
    Dennis Amelunxen
    Peter Bürgisser
    Mathematical Programming, 2015, 149 : 105 - 130