Fan Valuations and Spherical Intrinsic Volumes

被引:0
|
作者
Backman, Spencer [1 ]
Manecke, Sebastian [2 ]
Sanyal, Raman [2 ]
机构
[1] Univ Vermont, Dept Math & Stat, Burlington, VT 05401 USA
[2] Goethe Univ Frankfurt, Inst Math, Frankfurt, Germany
基金
美国国家科学基金会;
关键词
Fans; Valuations; Hyperplane arrangements; Spherical intrinsic volumes; Characteristic polynomials; Whitney numbers; Indicator functions; POLYHEDRAL CONES;
D O I
10.1007/s00026-024-00699-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize valuations on polyhedral cones to valuations on (plane) fans. For fans induced by hyperplane arrangements, we show a correspondence between rotation-invariant valuations and deletion- restriction invariants. In particular, we define a characteristic polynomial for fans in terms of spherical intrinsic volumes and show that it coincides with the usual characteristic polynomial in the case of hyperplane arrangements. This gives a simple deletion-restriction proof of a result of Klivans-Swartz. The metric projection of a cone is a piecewise-linear map, whose underlying fan prompts a generalization of spherical intrinsic volumes to indicator functions. We show that these intrinsic indicators yield valuations that separate polyhedral cones. Applied to hyperplane arrangements, this generalizes a result of Kabluchko on projection volumes.
引用
收藏
页码:1285 / 1302
页数:18
相关论文
共 50 条