S 2 synthetic acceleration and positivity-preserving schemes for solving the neutron transport equation

被引:1
|
作者
Yuan, Daming [1 ,2 ,3 ,5 ]
Yu, Yongbo [1 ]
Zheng, Huasheng [4 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang, Peoples R China
[2] Yili Normal Univ, Sch Math & Stat, Yining, Peoples R China
[3] Jiangxi Prov Ctr Appl Math, Nanchang, Peoples R China
[4] Nanchang Hangkong Univ, Sch Math & Informat, Nanchang, Peoples R China
[5] 99,Ziyang Ave, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Neutron transport equation; Positivity-preserving scheme; S 2 synthetic acceleration; Linear discontinuous Galerkin method;
D O I
10.1016/j.cnsns.2024.108089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the numerical solution of neutron transport equations, both the positivity -preserving property and speeding up the iterative convergence are important and challenging issues. In this work, the combination of the S 2 synthetic acceleration method and a positivity -preserving scheme are derived and analyzed. For the neutron transport and the S 2 equations, we discretize them by the linear discontinuous differencing scheme and apply linear scaling limiter to obtain the non -negative solution. The limiter is simple to implement. Numerical results for solving optically thick problems verify the efficiency of the proposed schemes.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A positivity-preserving and energy stable scheme for a quantum diffusion equation
    Huo, Xiaokai
    Liu, Hailiang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (06) : 2973 - 2999
  • [22] Positivity-preserving schemes for Euler equations: Sharp and practical CFL conditions
    Calgaro, C.
    Creuse, E.
    Goudon, T.
    Penel, Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 234 : 417 - 438
  • [23] WELL-BALANCED AND POSITIVITY-PRESERVING SURFACE RECONSTRUCTION SCHEMES SOLVING RIPA SYSTEMS WITH NONFLAT BOTTOM TOPOGRAPHY
    Dong, Jian
    Qian, Xu
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (05): : A3098 - A3129
  • [24] COMPARATIVE STUDY OF HIGH-ORDER POSITIVITY-PRESERVING WENO SCHEMES
    Kotov, Dmitry
    Yee, H. C.
    Sjogreen, Bjorn
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 1047 - 1058
  • [25] Smoothing with positivity-preserving Pade schemes for parabolic problems with nonsmooth data
    Wade, BA
    Khaliq, AQM
    Siddique, M
    Yousuf, M
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (03) : 553 - 573
  • [26] SOLUTION OF THE INITIAL INVERSE PROBLEMS IN THE HEAT EQUATION USING THE FINITE DIFFERENCE METHOD WITH POSITIVITY-PRESERVING PADE SCHEMES
    Masood, K.
    Yousuf, M.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2010, 57 (09) : 691 - 708
  • [27] A new positivity-preserving domain decomposition method for the 2-D diffusion equation
    Jia, Dongxu
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (11):
  • [28] Positivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates
    Ling, Dan
    Cheng, Juan
    Shu, Chi-Wang
    COMPUTERS & FLUIDS, 2017, 157 : 112 - 130
  • [29] Analysis of the decoupled and positivity-preserving DDFV schemes for diffusion problems on polygonal meshes
    Dong, Qiannan
    Su, Shuai
    Wu, Jiming
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (02)
  • [30] C1 positivity-preserving interpolation schemes with local free parameters
    Qin, Xiangbin
    Qin, Lei
    Xu, Qingsong
    IAENG International Journal of Computer Science, 2016, 43 (02) : 219 - 227