Effect of fission products on the thermal conductivity of ThO2-A molecular dynamics study

被引:1
|
作者
Wang, Ziqiang [1 ]
Yang, Chen [1 ]
Yu, Miaosen [2 ]
Ma, Wenxue [2 ]
Guo, Liyao [1 ]
Wei, Zhixian [2 ]
Gao, Ning [2 ,3 ]
Yao, Zhongwen [4 ]
Wang, Xuelin [2 ]
机构
[1] Jilin Univ, Key Lab Engn B Engn, Minist Educ, Changchun 130022, Peoples R China
[2] Shandong Univ, Inst Frontier & Interdisciplinary Sci, Key Lab Particle Phys & Particle Irradiat MOE, Qingdao 266237, Peoples R China
[3] Chinese Acad Sci, Inst Modern Phys, Lanzhou, Peoples R China
[4] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L3N6, Canada
基金
中国国家自然科学基金;
关键词
Thorium dioxide; Fission products; Molecular dynamics; Thermal conductivity; Theoretical models; Dislocation loops; TRANSPORT-PROPERTIES; EDGE DISLOCATIONS; UO2; GAS; POTENTIALS; DIFFUSION; IMPACT; DAMAGE; BULK; HE;
D O I
10.1016/j.nme.2024.101681
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Thermal conductivity (k), as an important thermal property of nuclear fuels, would be deteriorated due to fission products. Therefore, to investigate the effect of fission products on the thermal conductivity of nuclear fuels is essential. Two typical fission products: Xe and Kr with 0-2 % concentration are considered in this work. The lattice constants (L) of ThO2 increase due to fission products at all testing temperatures. The extent of increase in L due to Xe interstitials is the maximum. The fission products significantly reduce the thermal conductivity of ThO2. The extent of reduction in thermal conductivity of ThO2 by the defects follows the trend Xe (interstitials) > Xe (substitutional defects) > Kr (substitutional defects) > Kr (interstitials). Finally, the full-filled Xe/Kr bubble has a nearly identical thermal conductivity as an empty void or half-filled Xe/Kr bubble. The underlying reason may be that the thorium atoms have a lower mobility than uranium atoms. These calculated values can be used to predict the thermal properties of the irradiated ThO2.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Molecular Dynamics Study of Thermal Conductivity of Silver Chalcogenides
    Fukushima, Shogo
    Shimamura, Kohei
    Koura, Akihide
    Shimojo, Fuyuki
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2020, 257 (11):
  • [32] A molecular dynamics study of thermal conductivity of zirconium hydride
    Konashi, K
    Ikeshoji, T
    Kawazoe, Y
    Matsui, H
    JOURNAL OF ALLOYS AND COMPOUNDS, 2003, 356 : 279 - 282
  • [33] Molecular Dynamics Study on the Thermal Conductivity of PVDF Polymer
    Gao, Yanwen
    Gong, Liang
    Zhu, Chuanyong
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (11): : 3457 - 3464
  • [34] Molecular Dynamics Study on the Thermal Conductivity of Mesoporous Silica
    Huang, Chao
    Wei, Gaosheng
    Cui, Liu
    Du, Xiaoze
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (02): : 551 - 557
  • [35] Lattice thermal conductivity of δ-graphyne - A molecular dynamics study
    Zhang, Jide
    Cui, Yan
    Wang, Shuaiwei
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 90 : 116 - 122
  • [36] Thermal Conductivity of Graphene Oxide: A Molecular Dynamics Study
    Chen, J.
    Li, L.
    JETP LETTERS, 2020, 112 (02) : 117 - 121
  • [37] Thermal Conductivity of Graphene Oxide: A Molecular Dynamics Study
    J. Chen
    L. Li
    JETP Letters, 2020, 112 : 117 - 121
  • [38] Molecular Dynamics Study on Thermal Conductivity of Carbon Nanotubes
    Hou, Quan-Wen
    Cao, Bing-Yang
    Guo, Zeng-Yuan
    HEAT TRANSFER-ASIAN RESEARCH, 2010, 39 (07): : 455 - 459
  • [39] A molecular dynamics simulation study of thermal conductivity of plumbene
    Mohammadi, Rafat
    Karimi, Behrad
    Kieffer, John
    Hashemi, Daniel
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (44) : 28133 - 28142
  • [40] Molecular dynamics study for the thermal conductivity of diatomic liquid
    Tokumasu, T
    Kamijo, K
    SUPERLATTICES AND MICROSTRUCTURES, 2004, 35 (3-6) : 217 - 225