Γ-CONVERGENCE FOR AN OPTIMAL DESIGN PROBLEM WITH VARIABLE EXPONENT

被引:0
|
作者
Zorgati, Hamdi [1 ,2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 90950, Riyadh 11623, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Tunis, Tunisia
关键词
Optimal design; Variable exponent; Gamma-convergence; Relaxation; Variational methods; 3D-2D ASYMPTOTIC ANALYSIS; LOWER SEMICONTINUITY; FUNCTIONALS;
D O I
10.12941/jksiam.2023.27.296
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive the Gamma-limit of functionals pertaining to some optimal material distribution problems that involve a variable exponent, as the exponent goes to infinity. In addition, we prove a relaxation result for supremal optimal design functionals with respect to the weak-* L-infinity(Omega; [0, 1]) x W-1,W-p0 (Omega; R-m) weak topology.
引用
收藏
页码:296 / 310
页数:15
相关论文
共 50 条
  • [1] Optimal Control Problem for Bianchi Equation in Variable Exponent Sobolev Spaces
    Bandaliyev, Rovshan A.
    Guliyev, Vagif S.
    Mamedov, Ilgar G.
    Rustamov, Yasin I.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 180 (01) : 303 - 320
  • [2] Optimal Control Problem for Bianchi Equation in Variable Exponent Sobolev Spaces
    Rovshan A. Bandaliyev
    Vagif S. Guliyev
    Ilgar G. Mamedov
    Yasin I. Rustamov
    [J]. Journal of Optimization Theory and Applications, 2019, 180 : 303 - 320
  • [3] ON A FRACTIONAL PROBLEM WITH VARIABLE EXPONENT
    Hsini, Mounir
    Irzi, Nawal
    Kefi, Khaled
    [J]. PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2020, 21 (02): : 105 - 114
  • [4] A supercritical variable exponent problem
    Aghajani, A.
    Cowan, C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [5] On a singular elliptic problem with variable exponent
    Faraci, Francesca
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (01): : 43 - 50
  • [6] CONVERGENCE EXPONENT OF THE TARRY PROBLEM SINGULAR INTEGRAL
    ARKHIPOV, GI
    KARATSUBA, AA
    CHUBARIKOV, VN
    [J]. DOKLADY AKADEMII NAUK SSSR, 1979, 248 (02): : 268 - 272
  • [7] A review of an optimal design problem for a plate of variable thickness
    Munoz, Julio
    Pedregal, Pablo
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (01) : 1 - 13
  • [8] Variable Exponent p(middot)-Kirchhoff Type Problem with Convection in Variable Exponent Sobolev Spaces
    El Hammar, Hasnae
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41 : 19 - 19
  • [9] Multiplicity of solutions for an anisotropic variable exponent problem
    Tavares, Leandro S.
    [J]. BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [10] A multiplicity theorem for a variable exponent dirichlet problem
    Papageorgiou, Nikolaos S.
    Rocha, Eugenio M.
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2008, 50 : 335 - 349