Doping Engineering in Manganese Oxides for Aqueous Zinc-Ion Batteries

被引:0
|
作者
Ji, Fanjie [1 ]
Yu, Jiamin [1 ]
Hou, Sen [1 ]
Hu, Jinzhao [1 ]
Li, Shaohui [1 ]
机构
[1] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
manganese oxides; doping engineering; cathode materials; aqueous zinc-ion batteries; CATHODE MATERIALS; ENERGY-STORAGE; CHARGE STORAGE; ELECTRODE MATERIAL; HIGH-CAPACITY; CARBON CLOTH; PERFORMANCE; LITHIUM; MECHANISM; BETA-MNO2;
D O I
10.3390/ma17133327
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Manganese oxides (MnxOy) are considered a promising cathode material for aqueous zinc-ion batteries (AZIBs) due to their high theoretical specific capacity, various oxidation states and crystal phases, and environmental friendliness. Nevertheless, their practical application is limited by their intrinsic poor conductivity, structural deterioration, and manganese dissolution resulting from Jahn-Teller distortion. To address these problems, doping engineering is thought to be a favorable modification strategy to optimize the structure, chemistry, and composition of the material and boost the electrochemical performance. In this review, the latest progress on doped MnxOy-based cathodes for AZIBs has been systematically summarized. The contents of this review are as follows: (1) the classification of MnxOy-based cathodes; (2) the energy storage mechanisms of MnxOy-based cathodes; (3) the synthesis route and role of doping engineering in MnxOy-based cathodes; and (4) the doped MnxOy-based cathodes for AZIBs. Finally, the development trends of MnxOy-based cathodes and AZIBs are described.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Development of vanadium oxides as cathodes in aqueous zinc-ion batteries: A mini review
    Jin, Hao
    Li, Rong
    Zhu, Limin
    Qiu, Xuejing
    Yang, Xinli
    Xie, Lingling
    Yi, Lanhua
    Cao, Xiaoyu
    ELECTROCHEMISTRY COMMUNICATIONS, 2024, 159
  • [22] Application of Manganese-Based Materials in Aqueous Rechargeable Zinc-Ion Batteries
    Zhang, Wanhong
    Zhai, Xiaoliang
    Zhang, Yansong
    Wei, Huijie
    Ma, Junqing
    Wang, Jing
    Liang, Longlong
    Liu, Yong
    Wang, Guangxin
    Ren, Fengzhang
    Wei, Shizhong
    FRONTIERS IN ENERGY RESEARCH, 2020, 8 (08):
  • [23] Insights into the oxygen vacancies in transition metal oxides for aqueous Zinc-Ion batteries
    Song, Qiongyao
    Zhou, Shuhao
    Wang, Shouyue
    Li, Sheng
    Xu, Li
    Qiu, Jingxia
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [24] Reaction mechanisms for electrolytic manganese dioxide in rechargeable aqueous zinc-ion batteries
    Thuy Nguyen Thanh Tran
    Susi Jin
    Marine Cuisinier
    Brian D. Adams
    Douglas G. Ivey
    Scientific Reports, 11
  • [25] Manganese-based materials as cathode for rechargeable aqueous zinc-ion batteries
    Guo, Yixuan
    Zhang, Yixiang
    Lu, Hongbin
    BATTERY ENERGY, 2022, 1 (02):
  • [26] Reaction mechanisms for electrolytic manganese dioxide in rechargeable aqueous zinc-ion batteries
    Tran, Thuy Nguyen Thanh
    Jin, Susi
    Cuisinier, Marine
    Adams, Brian D.
    Ivey, Douglas G.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [27] Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries
    Liu, Chaofeng
    Tian, Meng
    Wang, Mingshan
    Zheng, Jiqi
    Wang, Shuhua
    Yan, Mengyu
    Wang, Zhaojie
    Yin, Zhengmao
    Yang, Jihui
    Cao, Guozhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) : 7713 - 7723
  • [28] Zinc-Ion Storage Mechanism of Polyaniline for Rechargeable Aqueous Zinc-Ion Batteries
    Gong, Jiangfeng
    Li, Hao
    Zhang, Kaixiao
    Zhang, Zhupeng
    Cao, Jie
    Shao, Zhibin
    Tang, Chunmei
    Fu, Shaojie
    Wang, Qianjin
    Wu, Xiang
    NANOMATERIALS, 2022, 12 (09)
  • [29] Better engineering layered vanadium oxides for aqueous zinc-ion batteries: Going beyond widening the interlayer spacing
    Guo, Yue
    Jiang, Hanmei
    Liu, Binbin
    Wang, Xingyang
    Zhang, Yifu
    Sun, Jianguo
    Wang, John
    SMARTMAT, 2024, 5 (01):
  • [30] Atomic engineering promoted electrooxidation kinetics of manganese-based cathode for stable aqueous zinc-ion batteries
    Luo, Hao
    Wang, Lipeng
    Ren, Penghui
    Jian, Jiahuang
    Liu, Xiong
    Niu, Chaojiang
    Chao, Dongliang
    NANO RESEARCH, 2022, 15 (09) : 8603 - 8612