Automated kharif rice mapping using SAR data and machine learning techniques in GEE platform

被引:0
|
作者
Vyas, Saurabh P. [1 ]
Kumar, Mukesh [2 ]
Kathiria, Dhaval [1 ]
Jani, Mandakini [1 ]
Pandya, Mehul R. [2 ]
Bhattacharya, Bimal K. [2 ]
机构
[1] Anand Agr Univ, Coll Agr Informat Technol, Anand 388110, India
[2] Indian Space Res Org, Space Applicat Ctr, Ahmadabad 380058, India
来源
CURRENT SCIENCE | 2024年 / 126卷 / 10期
关键词
Google earth engine; large-scale rice mapping; machine learning; multi-temporal; SAR; LAND-COVER; CLASSIFICATION; PADDY; EXTRACTION; CROPS;
D O I
10.18520/cs/v126/i10/1265-1272
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The present study employs temporal C -band Sentinel -1 synthetic aperture radar (SAR) data within the Google Earth Engine (GEE) platform to evaluate discriminability and estimate acreage of kharif rice across major Indian states. Utilizing multi -temporal Sentinel -1 Cband SAR data, including time -series cross -polarization vertical-horizontal channels, the research spanned states such as Punjab, Haryana, Uttar Pradesh, Madhya Pradesh, Bihar, Jharkhand, Chhattisgarh, Telangana, Andhra Pradesh, West Bengal, Odisha and Assam. Employing five machine learning algorithms on GEE, with random forest demonstrating high performance, achieved 98.59% accuracy and 0.92 kappa coefficient ( kappa ) in Odisha. Subsequently, the RF algorithm was applied for kharif rice acreage estimation, yielding overall accuracies from 88.48% to 97.28% and kappa between 0.87 and 0.96 with deviations from reported acreage ranging from 0.95% to 12% across diverse states. The study underscores the efficacy of SAR data and machine learning within GEE for precise large-scale automated mapping of kharif rice.
引用
收藏
页码:1265 / 1272
页数:8
相关论文
共 50 条
  • [31] Early diagnosis of rice plant disease using machine learning techniques
    Sharma, Mayuri
    Kumar, Chandan Jyoti
    Deka, Aniruddha
    ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION, 2022, 55 (03) : 259 - 283
  • [32] CVR: An Automated CV Recommender System Using Machine Learning Techniques
    Shovon, S. M. Shahriar Ferdous
    Bin Mohsin, Md. Mahir Absar
    Tama, Kanij Tamema Jahan
    Ferdaous, Jannatul
    Momen, Sifat
    DATA SCIENCE AND ALGORITHMS IN SYSTEMS, 2022, VOL 2, 2023, 597 : 312 - 325
  • [33] Automated identification of callbacks in Android framework using machine learning techniques
    Chen X.
    Mu R.
    Yan Y.
    Chen, Xiupeng (chenxiupeng@ime.ac.cn), 2018, Inderscience Publishers, 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (10) : 301 - 312
  • [34] Automated Analysis of Femoral Artery Calcification Using Machine Learning Techniques
    Zhao, Liang
    Odigwe, Brendan
    Lessner, Susan
    Clair, Daniel G.
    Mussa, Firas
    Valafar, Homayoun
    2019 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2019), 2019, : 584 - 589
  • [35] Automated Screening of Arrhythmia Using Wavelet Based Machine Learning Techniques
    Martis, Roshan Joy
    Krishnan, M. Muthu Rama
    Chakraborty, Chandan
    Pal, Sarbajit
    Sarkar, Debranjan
    Mandana, K. M.
    Ray, Ajoy Kumar
    JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (02) : 677 - 688
  • [36] Automated Screening of Arrhythmia Using Wavelet Based Machine Learning Techniques
    Roshan Joy Martis
    M. Muthu Rama Krishnan
    Chandan Chakraborty
    Sarbajit Pal
    Debranjan Sarkar
    K. M. Mandana
    Ajoy Kumar Ray
    Journal of Medical Systems, 2012, 36 : 677 - 688
  • [37] Automated prediction of Heart disease using optimized machine learning techniques
    Alqahtani, Lama A.
    Alotaibi, Hanadi M.
    Khan, Irfan Ullah
    Aslam, Nida
    2020 11TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2020, : 298 - 302
  • [38] An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques
    Sraitih, Mohamed
    Jabrane, Younes
    Hajjam El Hassani, Amir
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (22)
  • [39] CVR: An Automated CV Recommender System Using Machine Learning Techniques
    Shovon, S. M. Shahriar Ferdous
    Mohsin, Md. Mahir Absar Bin
    Tama, Kanij Tamema Jahan
    Ferdaous, Jannatul
    Momen, Sifat
    Lecture Notes in Networks and Systems, 2023, 597 LNNS : 312 - 325
  • [40] Automated identification of callbacks in Android framework using machine learning techniques
    Chen, Xiupeng
    Mu, Rongzeng
    Yan, Yuepeng
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2018, 10 (04) : 301 - 312