ENHANCEMENT AND EXPERIMENTAL STUDY ON THERMAL BEHAVIOUR OF HEAT PIPE BASED SOLAR ABSORBER BY USING CuO NANOFLUID

被引:1
|
作者
Thirunavukkarasu, Mylswamy [1 ]
Selvaraj, Kavitha [2 ]
Chiranjeevi, Chalasani [3 ]
Rathinavelu, Venkatesh [4 ]
Maguluri, Lakshmana Phaneendra [5 ]
Al Obaid, Sami [6 ]
Alharbi, Sulaiman Ali [6 ]
Kalam, Md. Abul [7 ]
Yokeswaran, Ramadoss [8 ]
机构
[1] Dr Mahalingam Coll Engn & Technol, Dept Automobile Engn, Coimbatore, Tamil Nadu, India
[2] Kalasalingam Acad Res & Educ, Dept Mech Engn, Virudunagar, Tamil Nadu, India
[3] Vellore Inst Technol, Sch Mech Engn, Vellore, Tamil Nadu, India
[4] Saveetha Inst Med & Tech Sci SIMATS, Saveetha Sch Engn, Dept Mech Engn, Chennai, Tamilnadu, India
[5] Koneru Lakshmaiah Educ Fdn, Dept Comp Sci & Engn, Vaddeswaram, Andhra Pradesh, India
[6] King Saud Univ, Coll Sci, Dept Bot & Microbiol, Riyadh, Saudi Arabia
[7] Univ Technol Sydney, Sch Civil & Environm Engn, FEIT, Sydney, NSW, Australia
[8] K Ramakrishnan Coll Technol, Dept Mech Engn, Tiruchirappalli, Tamilnadu, India
来源
THERMAL SCIENCE | 2024年 / 28卷 / 1A期
关键词
CuO; heat pipe solar absorber; nanofluid; thermal performance; PERFORMANCE; COLLECTOR;
D O I
10.2298/TSCI230311274T
中图分类号
O414.1 [热力学];
学科分类号
摘要
Technological growth in thermal science found that the awareness of solar thermal energy improved widely in various applications and spotted issues on conventional flat plate solar collectors operating with water fluid: lower thermal efficiency, limited thermal performance during low sunlight, and unavoidable heat loss for extended plate surface. This research attempts to enhance the thermal performance of solar collectors modified with heat pipe solar absorber (HPSA) evaluated by 0.010, 0.015, and 0.02 volume fractions of CuO nanofluid at 18 Lpm. The effect of CuO on varied flow rate on temperature gain, heat transfer coefficient, and thermal efficiency of HPSA is experimentally studied, and its findings are compared with water fluid. The HPSA operates with 0.015 volume CuO nanofluid with a higher rate of flow, proving better thermal performance and offering a maximum temperature gain of 68 degrees C with a better heat transfer coefficient of 81.5W/m 2 K results enhanced thermal efficiency of 85.2%, which are higher than the water fluid operated HPSA system. An optimum operating parameter of HPSA is suggested for heat exchanger applications.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 50 条
  • [21] Experimental study on thermal performance of solar absorber with CuO nano structure selective coating
    Lu, Yalin
    Chen, Zhenqian
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 1303 - 1310
  • [22] Heat transfer enhancement using MgO/water nanofluid in heat pipe
    Menlik, Tayfun
    Sozen, Adnan
    Guru, Metin
    Oztas, Sinan
    JOURNAL OF THE ENERGY INSTITUTE, 2015, 88 (03) : 247 - 257
  • [23] Experimental and numerical study on enhancement of heat transfer characteristics of a heat pipe utilizing aqueous clinoptilolite nanofluid
    Sozen, Adnan
    Guru, Metin
    Khanlari, Ataollah
    Ciftci, Erdem
    APPLIED THERMAL ENGINEERING, 2019, 160
  • [24] A study on the characteristics of carbon nanofluid for heat transfer enhancement of heat pipe
    Park, Sung Seek
    Kim, Nam Jin
    RENEWABLE ENERGY, 2014, 65 : 123 - 129
  • [25] Application of nanofluid in thermal performance enhancement of horizontal screen heat pipe
    Shu, Tao
    Liu, Zhen-Hua
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2008, 23 (10): : 1795 - 1799
  • [26] Experimental study of the thermal performance for the novel flat plate solar water heater with micro heat pipe array absorber
    Deng, Yuechao
    Zhao, Yaohua
    Quan, Zhenhua
    Zhu, Tingting
    INTERNATIONAL CONFERENCE ON SOLAR HEATING AND COOLING FOR BUILDINGS AND INDUSTRY, SHC 2014, 2015, 70 : 41 - 48
  • [27] Experimental Investigation on the Heat Pipe using Al2O3 and CuO Hybrid Nanofluid
    Hariprasad Tarigonda
    Dadamiah P. M. D. Shaik
    D. Raghu Rami Reddy
    G. Vidya Sagar Reddy
    International Journal of Thermophysics, 2022, 43
  • [28] Experimental Investigation on the Heat Pipe using Al2O3 and CuO Hybrid Nanofluid
    Tarigonda, Hariprasad
    Shaik, Dadamiah P. M. D.
    Reddy, D. Raghu Rami
    Reddy, G. Vidya Sagar
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2022, 43 (10)
  • [29] Performance enhancement of pyramid solar distiller using nanofluid integrated with v-corrugated absorber and wick: An experimental study
    Sharshir, Swellam W.
    Elkadeem, M. R.
    Meng, An
    APPLIED THERMAL ENGINEERING, 2020, 168
  • [30] Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe
    Nazari, Mohammad Alhuyi
    Ghasempour, Roghayeh
    Ahmadi, Mohammad Hossein
    Heydarian, Gholamreza
    Shafii, Mohammad Behshad
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2018, 91 : 90 - 94