Chemical fault diagnosis network based on single domain generalization

被引:0
|
作者
Guo, Yu [1 ]
Zhang, Jundong [1 ]
机构
[1] Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R China
关键词
Fault diagnosis; Tennessee Eastman process; Process safety; Domain generalization; MODEL; IDENTIFICATION;
D O I
10.1016/j.psep.2024.05.106
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent developments in fault diagnosis have leveraged domain generalization to address the issue of domain shift. Most existing methods focus on learning domain-invariant representations from multiple source domains. However, collecting valuable fault samples from varying operational conditions is challenging, and it is common for available data to originate from a single operational condition. Thus, this paper introduces a Multi-scale generative and adversarial Metric networks (MGAMN) for Chemical Process Fault Diagnosis. To enhance model generalization, a domain generation module was developed to create augmented domains with significant distributional differences from the source domain. The diagnostic task module then extracts domain-invariant features from both the source and augmented domains. A multi-scale generation strategy is established, utilizing multi-scale deep separable convolutions (Dsc) to ensure that the generated samples contain rich state information. Additionally, an adversarial training and metric learning strategy is designed to learn generalized features capable of resisting unknown domain shifts. Extensive diagnostic experiments on the non-isothermal continuous stirred tank reactor (CSTR) and the Tennessee Eastman Process (TEP) chemical datasets validate the effectiveness of the proposed method. Moreover, ablation studies confirm the effectiveness of the proposed modular strategy, demonstrating significant potential for practical applications.
引用
收藏
页码:1133 / 1144
页数:12
相关论文
共 50 条
  • [21] Federated domain generalization for intelligent fault diagnosis based on pseudo-siamese network and robust global model aggregation
    Yan Song
    Peng Liu
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 685 - 696
  • [22] An Auxiliary Branch Semisupervised Domain Generalization Network for Unseen Working Conditions Bearing Fault Diagnosis
    Zeng, Liang
    Chang, Xinyu
    Chen, Jia
    Wang, Shanshan
    IEEE Sensors Journal, 2024, 24 (24) : 42327 - 42342
  • [23] Federated adversarial domain generalization network: A novel machinery fault diagnosis method with data privacy
    Wang, Rui
    Huang, Weiguo
    Shi, Mingkuan
    Wang, Jun
    Shen, Changqing
    Zhu, Zhongkui
    KNOWLEDGE-BASED SYSTEMS, 2022, 256
  • [24] Deep Semisupervised Domain Generalization Network for Rotary Machinery Fault Diagnosis Under Variable Speed
    Liao, Yixiao
    Huang, Ruyi
    Li, Jipu
    Chen, Zhuyun
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (10) : 8064 - 8075
  • [25] Domain Transferability-Based Deep Domain Generalization Method Towards Actual Fault Diagnosis Scenarios
    Shi, Yaowei
    Deng, Aidong
    Deng, Minqiang
    Li, Jing
    Xu, Meng
    Zhang, Shun
    Ding, Xue
    Xu, Shuo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (06) : 7355 - 7366
  • [26] Curriculum learning-based domain generalization for cross-domain fault diagnosis with category shift
    Wang, Yu
    Gao, Jie
    Wang, Wei
    Yang, Xu
    Du, Jinsong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 212
  • [27] Intelligent Fault Identification Based on Multisource Domain Generalization Towards Actual Diagnosis Scenario
    Zheng, Huailiang
    Wang, Rixin
    Yang, Yuantao
    Li, Yuqing
    Xu, Minqiang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (02) : 1293 - 1304
  • [28] Rolling Bearing Fault Diagnosis Method Based On Dual Invariant Feature Domain Generalization
    Xie, Yining
    Shi, Jiangtao
    Gao, Cong
    Yang, Guojun
    Zhao, Zhichao
    Guan, Guohui
    Chen, Deyun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [29] Decentralized federated domain generalization with cluster alignment for fault diagnosis
    Xu, Danya
    Jia, Mingwei
    Chen, Tao
    Liu, Yi
    Chai, Tianyou
    Yang, Tao
    CONTROL ENGINEERING PRACTICE, 2024, 148
  • [30] Domain expansion fusion single-domain generalization framework for mechanical fault diagnosis under unknown working conditions
    Li, Xuegang
    Tang, Jian
    Pu, Yuanyue
    Wang, Changyuan
    Cao, Huajun
    Ding, Xiaoxi
    Huang, Wenbin
    Engineering Applications of Artificial Intelligence, 2024, 138