Modeling phonon-mediated quasiparticle poisoning in superconducting qubit arrays

被引:7
|
作者
Yelton, E. [1 ]
Larson, C. P. [1 ]
Iaia, V. [1 ]
Dodge, K. [2 ]
La Magna, G. [3 ,4 ]
Baity, P. G. [5 ]
Pechenezhskiy, I. V. [1 ]
McDermott, R. [6 ]
Kurinsky, N. A. [7 ,8 ]
Catelani, G. [3 ,4 ]
Plourde, B. L. T. [1 ]
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Syracuse Univ, Dept Phys, Intelligence Community Postdoctoral Res Fellowship, Syracuse, NY 13244 USA
[3] Forschungszentrum Julich, JARA Inst Quantum Informat PGI 11, Julich 52425, Germany
[4] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi 9639, U Arab Emirates
[5] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA
[6] Univ Wisconsin Madison, Dept Phys, Madison, WI 53706 USA
[7] Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA
[8] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
DYNAMICS; ERRORS; IMPACT;
D O I
10.1103/PhysRevB.110.024519
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Correlated errors caused by ionizing radiation impacting superconducting qubit chips are problematic for quantum error correction. Such impacts generate quasiparticle (QP) excitations in the qubit electrodes, which temporarily reduce qubit coherence significantly. The many energetic phonons produced by a particle impact travel efficiently throughout the device substrate and generate quasiparticles with high probability, thus causing errors on a large fraction of the qubits in an array simultaneously. We describe a comprehensive strategy for the numerical simulation of the phonon and quasiparticle dynamics in the aftermath of an impact. We compare the simulations with experimental measurements of phonon-mediated QP poisoning and demonstrate that our modeling captures the spatial and temporal footprint of the QP poisoning for various configurations of phonon down-conversion structures. We thus present a path forward for the operation of superconducting quantum processors in the presence of ionizing radiation.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Phonon softening in nanostructured phonon-mediated superconductors (review)
    Prischepa, S. L.
    Kushnir, V. N.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (31)
  • [22] Superconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions
    S.-L. Yang
    J. A. Sobota
    C. A. Howard
    C. J. Pickard
    M. Hashimoto
    D. H. Lu
    S.-K. Mo
    P. S. Kirchmann
    Z.-X. Shen
    Nature Communications, 5
  • [23] Crossover from phonon-mediated to repulsion-induced superconducting pairing with large momentum
    Belyavsky, VI
    Kopaev, YV
    Nguyen, NT
    Togushova, YN
    PHYSICS LETTERS A, 2005, 342 (03) : 267 - 271
  • [24] PHONON-MEDIATED OPTICAL NONLINEARITY IN POLYDIACETYLENE
    GREENE, BI
    MUELLER, JF
    ORENSTEIN, J
    RAPKINE, DH
    SCHMITTRINK, S
    THAKUR, M
    PHYSICAL REVIEW LETTERS, 1988, 61 (03) : 325 - 328
  • [25] Phonon-mediated Nuclear Excitation Transfer
    Hagelstein, Peter L.
    JOURNAL OF CONDENSED MATTER NUCLEAR SCIENCE, 2018, 27 : 97 - 142
  • [26] The next breakthrough in phonon-mediated superconductivity
    Pickett, W. E.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2008, 468 (02): : 126 - 135
  • [27] Phonon-mediated characterization of microelectromechanical resonators
    Wong, Wai-Kin
    Palaniapan, Moorthi
    APPLIED PHYSICS LETTERS, 2006, 89 (06)
  • [28] Phonon-mediated anomalous dynamics of defects
    A. Najafi
    R. Golestanian
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 34 : 99 - 103
  • [29] Phonon-mediated electron pairing in graphene
    Lozovik, Yu. E.
    Sokolik, A. A.
    PHYSICS LETTERS A, 2010, 374 (27) : 2785 - 2791
  • [30] Phonon-mediated anomalous dynamics of defects
    Najafi, A
    Golestanian, R
    EUROPEAN PHYSICAL JOURNAL B, 2003, 34 (01): : 99 - 103