An Einstein-Maxwell interior solution obeying the Karmarkar condition

被引:0
|
作者
Estevez-Delgado, G. [1 ]
Estevez-Delgado, J. [2 ]
Cleary-Balderas, A. [3 ]
Duran, M. Pineda [4 ]
机构
[1] Univ Michoacana, Fac Quim Farmacobiol, Tzintzuntzan 173 Col Matamoros, Morelia Michoacan 58240, Mexico
[2] Univ Michoacana, Fac Ciencias Fis Matemat, Edificio B Ciudad Univ, Morelia Michoacan 58060, Mexico
[3] Univ Michoacana, Fac Ingn Elect, Edificio Ciudad Univ, Morelia Michoacan 58060, Mexico
[4] Inst Tecnol Super Tacambaro, Ave Tecnol 201 Zona Gigante, Tacambaro Michoacan 61650, Mexico
关键词
Einstein-; Maxwell; stars solutions; karmarkar condition; STATIC SOLUTIONS; MASS; SPHERES; FIELD; STARS; EQUILIBRIUM; SPACE; LIMIT; MODEL;
D O I
10.31349/RevMexFis.70.030702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the Einstein -Maxwell equation system, with perfect fluid in a static and spherically symmetrical spacetime, we report an analytical internal solution which is obtained by imposing the Karmarkar condition, the behaviour of the solution is such that the density and pressures are monotonically decreasing functions while the electric field function is a monotonically increasing function that is adequate to represent compact objects. In particular we have these characteristics for the observational values of mass (1.29 +/- 0.05) M o and radius (8.831 +/- 0.09) km of the star SMC X-4. We will analyze the two extremes the one of minimum compactness u min = 0.20523 (M = 1.24 M o , R = 8.921 km) and the one of maximum compactness u max = 0.22635 (M = 1.34 M o , R = 8.741 km), resulting that the electric charge Q u min is an element of [1.5279, 1.8498]10 20 C and Q u max is an element of [1.6899, 1.9986]10 20 C respectively, implying that the case with higher compactness has a higher electric charge. Also in a graphic manner, it is shown that the causality condition is satisfied and that the solution is stable against infinitesimal radial adiabatic perturbation and also in regards to the Harrison-Novikov-Zeldovich criteria.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A GENERALIZATION OF THE EINSTEIN-MAXWELL SYSTEM
    NISHIOKA, M
    HADRONIC JOURNAL, 1986, 9 (02): : 87 - 89
  • [32] SYMMETRIES OF EINSTEIN-MAXWELL EQUATIONS
    ROSEN, G
    JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (02) : 313 - &
  • [33] CLASS OF EINSTEIN-MAXWELL DILATONS
    MATOS, T
    NUNEZ, D
    QUEVEDO, H
    PHYSICAL REVIEW D, 1995, 51 (02): : R310 - R313
  • [34] HOMOGENEOUS EINSTEIN-MAXWELL FIELDS
    KRAMER, D
    ACTA PHYSICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 44 (04): : 353 - 356
  • [35] A generalization of the Einstein-Maxwell equations
    Cotton, Fredrick W.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (02):
  • [36] STATIONARY EINSTEIN-MAXWELL FIELDS
    PANOV, VF
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1980, (03): : 3 - 7
  • [37] Charged anisotropic compact objects obeying Karmarkar condition
    Gomez-Leyton, Y.
    Javaid, Hina
    Rocha, L. S.
    Tello-Ortiz, Francisco
    PHYSICA SCRIPTA, 2021, 96 (02)
  • [38] COMMENT ON THE SOLUTION OF STATIC, AXIALLY-SYMMETRIC EINSTEIN-MAXWELL FIELDS
    KRORI, KD
    CHOUDHURY, T
    PHYSICAL REVIEW D, 1979, 19 (08): : 2500 - 2501
  • [39] SOLUTION OF EINSTEIN-MAXWELL EQUATIONS FOR 2 UNEQUAL SPINNING SOURCES IN EQUILIBRIUM
    KOBISKE, RA
    PARKER, L
    PHYSICAL REVIEW D, 1974, 10 (08): : 2321 - 2324
  • [40] EXTERIOR AND INTERIOR SOLUTIONS OF THE EINSTEIN-MAXWELL FIELD-EQUATIONS FOR ROTATING CHARGED DUST
    GEORGIOU, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1993, 108 (01): : 69 - 74