An Einstein-Maxwell interior solution obeying the Karmarkar condition

被引:0
|
作者
Estevez-Delgado, G. [1 ]
Estevez-Delgado, J. [2 ]
Cleary-Balderas, A. [3 ]
Duran, M. Pineda [4 ]
机构
[1] Univ Michoacana, Fac Quim Farmacobiol, Tzintzuntzan 173 Col Matamoros, Morelia Michoacan 58240, Mexico
[2] Univ Michoacana, Fac Ciencias Fis Matemat, Edificio B Ciudad Univ, Morelia Michoacan 58060, Mexico
[3] Univ Michoacana, Fac Ingn Elect, Edificio Ciudad Univ, Morelia Michoacan 58060, Mexico
[4] Inst Tecnol Super Tacambaro, Ave Tecnol 201 Zona Gigante, Tacambaro Michoacan 61650, Mexico
关键词
Einstein-; Maxwell; stars solutions; karmarkar condition; STATIC SOLUTIONS; MASS; SPHERES; FIELD; STARS; EQUILIBRIUM; SPACE; LIMIT; MODEL;
D O I
10.31349/RevMexFis.70.030702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the Einstein -Maxwell equation system, with perfect fluid in a static and spherically symmetrical spacetime, we report an analytical internal solution which is obtained by imposing the Karmarkar condition, the behaviour of the solution is such that the density and pressures are monotonically decreasing functions while the electric field function is a monotonically increasing function that is adequate to represent compact objects. In particular we have these characteristics for the observational values of mass (1.29 +/- 0.05) M o and radius (8.831 +/- 0.09) km of the star SMC X-4. We will analyze the two extremes the one of minimum compactness u min = 0.20523 (M = 1.24 M o , R = 8.921 km) and the one of maximum compactness u max = 0.22635 (M = 1.34 M o , R = 8.741 km), resulting that the electric charge Q u min is an element of [1.5279, 1.8498]10 20 C and Q u max is an element of [1.6899, 1.9986]10 20 C respectively, implying that the case with higher compactness has a higher electric charge. Also in a graphic manner, it is shown that the causality condition is satisfied and that the solution is stable against infinitesimal radial adiabatic perturbation and also in regards to the Harrison-Novikov-Zeldovich criteria.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The interior field of a magnetized Einstein-Maxwell object
    Matos, T
    [J]. PHYSICS LETTERS A, 1998, 249 (04) : 271 - 274
  • [2] NEW SOLUTION OF EINSTEIN-MAXWELL EQUATIONS
    MCLENAGHAN, RG
    TARIQ, N
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (11) : 2306 - 2312
  • [3] A new solution of Einstein-Maxwell equation
    Wang, YJ
    Lu, MW
    [J]. CHINESE PHYSICS LETTERS, 1999, 16 (03) : 162 - 163
  • [4] NEW SOLUTION OF EINSTEIN-MAXWELL EQUATIONS
    王永久
    余洪伟
    刘明成
    [J]. Science Bulletin, 1992, (04) : 285 - 288
  • [5] EXACT SOLUTION OF EINSTEIN-MAXWELL EQUATIONS
    KALE, PP
    BAID, A
    [J]. CURRENT SCIENCE, 1978, 47 (20): : 757 - 758
  • [6] INTERIOR SOLUTIONS TO PLANE SYMMETRIC EINSTEIN-MAXWELL EQUATIONS
    HUMI, M
    LEBRITTON, JA
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A252 - A252
  • [7] CLASS OF EXACT INTERIOR SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS
    ISLAM, JN
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 353 (1675): : 523 - 531
  • [8] A quintessence type interior solution with Karmarkar condition
    Munoz, Nancy Cambron
    Vazquez, Jose Oswald Tellez
    Vazquez-Nambo, Manuel
    Yepez-Garcia, Victor Manuel
    Murguia, Aurelio Tamez
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (09)
  • [9] AN EXACT STATIONARY SOLUTION OF EINSTEIN-MAXWELL EQUATIONS
    KRAMER, D
    NEUGEBAUER, G
    [J]. ANNALEN DER PHYSIK, 1969, 24 (1-2) : 59 - +
  • [10] TOPOLOGICAL SOLUTION TO THE CYLINDRICAL EINSTEIN-MAXWELL EQUATIONS
    Gogberashvili, Merab
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2009, 18 (11): : 1765 - 1771