A simple framework to calibrate a soil water balance model with Sentinel-1 and Sentinel-2 observations over irrigated fields

被引:0
|
作者
Natali, Martina [1 ]
Modanesi, Sara [2 ]
Massari, Christian [2 ]
Brocca, Luca [2 ]
De Lannoy, Gabrielle J. M. [3 ]
Maino, Andrea [4 ]
Mantovani, Fabio [4 ]
机构
[1] CIMA Res Fdn, Savona, Italy
[2] CNR, Res Inst Geohydrol Protect, Perugia, Italy
[3] Katholieke Univ Leuven, Dept Earth & Environm Sci, Heverlee, Belgium
[4] Univ Ferrara, Dept Phys & Earth Sci, INFN Ferrara Sect, Ferrara, Italy
关键词
water cloud model; soil water balance; soil moisture; Sentinel-1; NDVI; RADAR BACKSCATTER; MOISTURE;
D O I
10.1109/MetroAgriFor58484.2023.10424194
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This study presents a framework to calibrate a combined soil water balance (SWB) model and Water Cloud Model (WCM) with Sentinel-1 backscatter observations. The SWB is coupled with WCM, which can simulate backscatter from soil moisture (SM) and Normalized Difference Vegetation Index (NDVI). The combined model, namely SWB(WCM), is calibrated by maximizing the Kling-Gupta Efficiency (KGE) between simulated backscattering values and observations from Sentinel-1. The procedure is carried out over data collected during a field campaign in 2017 at an experimental site in Budrio (BO), Italy, cultivated with tomato. The calibration scheme involves 7 parameters and presents good results in terms of backscatter calibration (KGE = 0.69). To evaluate the overall performance of the model, SM estimates from the SWB model are compared with in-situ SM measurements from a Proximal Gamma Ray Station (PGRS), showing promising results (KGE = 0.58) in the estimation of soil moisture, without requiring any in-situ soil moisture measurements for calibration.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 50 条
  • [21] Evaluation of Sentinel-1 and Sentinel-2 Feature Sets for Delineating Agricultural Fields in Heterogeneous Landscapes
    Tetteh, Gideon Okpoti
    Gocht, Alexander
    Erasmi, Stefan
    Schwieder, Marcel
    Conrad, Christopher
    IEEE Access, 2021, 9 : 116702 - 116719
  • [22] Evaluation of Sentinel-1 and Sentinel-2 Feature Sets for Delineating Agricultural Fields in Heterogeneous Landscapes
    Tetteh, Gideon Okpoti
    Gocht, Alexander
    Erasmi, Stefan
    Schwieder, Marcel
    Conrad, Christopher
    IEEE ACCESS, 2021, 9 : 116702 - 116719
  • [23] Data integration of Sentinel-1 and Sentinel-2 for evaluating vegetation biomass and water status
    Pilia, S.
    Fontanelli, G.
    Santurri, L.
    Ramat, G.
    Baroni, F.
    Santi, E.
    Lapini, A.
    Pettinato, S.
    Paloscia, S.
    PROCEEDINGS OF 2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY, METROAGRIFOR, 2023, : 694 - 698
  • [24] Evaluation of soil moisture estimation techniques based on Sentinel-1 observations over wheat fields
    Arias, Maria
    Notarnicola, Claudia
    Campo-Besc, Miguel Angel
    Arregui, Luis Miguel
    Alvarez-Mozos, Jesus
    AGRICULTURAL WATER MANAGEMENT, 2023, 287
  • [25] Soil Texture Estimation Using Radar and Optical Data from Sentinel-1 and Sentinel-2
    Bousbih, Safa
    Zribi, Mehrez
    Pelletier, Charlotte
    Gorrab, Azza
    Lili-Chabaane, Zohra
    Baghdadi, Nicolas
    Ben Aissa, Nadhira
    Mougenot, Bernard
    REMOTE SENSING, 2019, 11 (13)
  • [26] Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale
    Attarzadeh, Reza
    Amini, Jalal
    Notarnicola, Claudia
    Greifeneder, Felix
    REMOTE SENSING, 2018, 10 (08)
  • [27] Modeling and Assessment of Vegetation Water Content on Soil Moisture Retrieval via the Synergistic Use of sentinel-1 and Sentinel-2
    Wang, Qi
    Jin, Taoyong
    Li, Jiancheng
    Chang, Xin
    Li, Yunwei
    Zhu, Yongchao
    EARTH AND SPACE SCIENCE, 2022, 9 (05)
  • [28] Synergistic retrievals of leaf area index and soil moisture from Sentinel-1 and Sentinel-2
    Quaife, T.
    Pinnington, E. M.
    Marzahn, P.
    Kaminski, T.
    Vossbeck, M.
    Timmermans, J.
    Isola, C.
    Rommen, B.
    Loew, A.
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2023, 14 (03) : 225 - 242
  • [29] A Novel Teacher-Student Framework for Soil Moisture Retrieval by Combining Sentinel-1 and Sentinel-2: Application in Arid Regions
    Jarray, Noureddine
    Ben Abbes, Ali
    Farah, Imed Riadh
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [30] Assessment of Surface Scattering Models Within the Water Cloud Model Toward Soil Moisture Retrievals Using Sentinel-1 and Sentinel-2 Images
    Inoubli, Raja
    Constantino-Recillas, Daniel Enrique
    Monsivais-Huertero, Alejandro
    Farah, Lilia Bennaceur
    Farah, Imed Riadh
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17412 - 17429