Thermal runaway front propagation characteristics, modeling and judging criteria for multi-jelly roll prismatic lithium-ion battery applications

被引:0
|
作者
Chen, Siqi [1 ,2 ,3 ]
Wei, Xuezhe [2 ]
Zhu, Zhehui [2 ]
Wu, Hang [2 ]
Ou, Yuxin [2 ]
Zhang, Guangxu [2 ]
Wang, Xueyuan [2 ]
Zhu, Jiangong [2 ]
Feng, Xuning [3 ]
Dai, Haifeng [2 ]
Ouyang, Minggao [3 ]
机构
[1] Tongji Univ, Postdoctoral Stn Mech Engn, Shanghai, Peoples R China
[2] Tongji Univ, Clean Energy Automot Engn Ctr, Shanghai 201804, Peoples R China
[3] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrical vehicle; Energy storage; Thermal runaway front; Thermal runaway propagation judging criteria; Thermal modeling; Thermal runaway propagation mitigation; NAIL-PENETRATION; MECHANISM;
D O I
10.1016/j.renene.2024.121045
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Large-format prismatic Li-ion batteries (LIBs) are prominent energy storage devices in electric transportation applications. However, large-format LIB induces severe thermal runaway (TR) disasters. Battery failure commonly initiates from a local point of one jelly roll and then propagates to the whole cell, called thermal runaway front (TRF) propagation. This study investigates the TRF propagation mechanism of multi-jelly rollbased LIBs through experiments, modeling, and theoretical analysis for thermal runaway propagation (TRP) mitigation. Experiments prove that battery venting changes along the jelly roll-safety valve directions during the TRF boundary movement. Besides, TRF propagation speed is found to be accelerated inside each cell (from 3.6 to 10.6 mm/s) during TRP, driven by a significant temperature gradient, chemical reactions, and gas flow along the TRP direction. The in-cell TRF acceleration behavior is more noticeable for batteries with more jelly rolls. The TRF speed-jelly roll index equations are proposed to reveal the propagation acceleration principle mathematically. Furthermore, a thermal-physical model is developed to precisely simulate in-cell TRF propagation behavior, which is validated by experimental data. Moreover, the TRF boundary temperature equation and "No TRP" judging criteria are proposed through theoretical analysis. This study proposes promising strategies for potential TRP suppression, contributing to future safe battery system design.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Uncertainty assessment method for thermal runaway propagation of lithium-ion battery pack
    Zhang, Wencan
    Yuan, Jiangfeng
    Huang, Jianfeng
    Xie, Yi
    APPLIED THERMAL ENGINEERING, 2024, 238
  • [22] Prediction of Lithium-ion Battery Thermal Runaway Propagation for Large Scale Applications Fire Hazard Quantification
    Said, Mohamad Syazarudin Md
    Tohir, Mohd Zahirasri Mohd
    PROCESSES, 2019, 7 (10)
  • [23] Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes
    Lai, Xin
    Wang, Shuyu
    Wang, Huaibin
    Zheng, Yuejiu
    Feng, Xuning
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 171
  • [24] Lithium-Ion Battery Thermal Runaway Propagation Characteristics Under 20 kPa with Different Airflow Rates
    Sun, Qiang
    Liu, Hangxin
    Zhi, Maoyong
    Zhao, Chenxi
    Jia, Jingyun
    Lv, Pengfei
    Xie, Song
    He, Yuanhua
    Chen, Xiantao
    FIRE TECHNOLOGY, 2023, 59 (03) : 1157 - 1179
  • [25] Lithium-Ion Battery Thermal Runaway Propagation Characteristics Under 20 kPa with Different Airflow Rates
    Qiang Sun
    Hangxin Liu
    Maoyong Zhi
    Chenxi Zhao
    Jingyun Jia
    Pengfei Lv
    Song Xie
    Yuanhua He
    Xiantao Chen
    Fire Technology, 2023, 59 : 1157 - 1179
  • [26] Analysis of thermal runaway propagation characteristics of lithium-ion battery module under local high temperature
    Hu, Tong
    Ma, Fei
    Xu, Xiaoming
    HIGH TEMPERATURES-HIGH PRESSURES, 2022, 51 (03) : 195 - 212
  • [27] Experimental study on thermal runaway and its propagation of large format prismatic lithium-ion batteries
    Wang, Boxuan
    Zhou, Zhizuan
    Li, Lun
    Peng, Yang
    Cao, Junda
    Yang, Lizhong
    Cao, Bei
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [28] Effects of heating position on the thermal runaway propagation of a lithium-ion battery module in a battery enclosure
    Li, Zijian
    Zhang, Peihong
    Shang, Rongxue
    APPLIED THERMAL ENGINEERING, 2023, 222
  • [29] Thermal behaviour and thermal runaway propagation in lithium-ion battery systems-A critical review
    Mallick, Soumyoraj
    Gayen, Debabrata
    JOURNAL OF ENERGY STORAGE, 2023, 62
  • [30] Thermal runaway propagation characteristics and preventing strategies under dynamic thermal transfer conditions for lithium-ion battery modules
    Zhang, Tao
    Qiu, Xiangyun
    Li, Miaomiao
    Yin, Yanxin
    Jia, Longzhou
    Dai, Zuoqiang
    Guo, Xiangxin
    Wei, Tao
    JOURNAL OF ENERGY STORAGE, 2023, 58