The anion photoelectron spectrum and diabatization of tetrazolyl

被引:0
|
作者
Avanessian, Chris [1 ]
Yarkony, David R. [1 ]
机构
[1] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 160卷 / 21期
基金
美国国家科学基金会;
关键词
NONADIABATIC COUPLING TERMS; MR-CI LEVEL; ANALYTIC EVALUATION; PROGRAM SYSTEM; EXCITED-STATES; BASIS-SETS; AB-INITIO; CHEMISTRY; GRADIENT; INTERSECTIONS;
D O I
10.1063/5.0214635
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The potential energy surface of tetrazolyl [cyclic (N4CH)] has a conical intersection seam between the two lowest-energy electronic states near the ground state minimum geometry. This work treats that molecule. The potential energy surfaces used in this study are based on a least-squares fitting procedure that includes ab initio energies, energy gradients, and derivative couplings described using polynomials up to fourth-order and ab initio data obtained from multireference configuration interaction wave functions. A five-electronic-state description was generated with a root mean square absolute energy error of 9.6 cm(-1), compared to 326.8 cm(-1 )when only second-order terms were used. The time-independent multimode vibronic coupling in the KDC approximation was used to simulate and analyze the anion ultraviolet photoelectron spectrum of tetrazolide.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The photoelectron spectrum of the benzaldehyde anion
    Buonaugurio, Angela
    Zhang, Xinxing
    Stokes, Sarah T.
    Wang, Yi
    Ellison, G. Barney
    Bowen, Kit H.
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2015, 377 : 278 - 280
  • [2] Encoding of vinylidene isomerization in its anion photoelectron spectrum
    DeVine, Jessalyn A.
    Weichman, Marissa L.
    Laws, Benjamin
    Chang, Jing
    Babin, Mark C.
    Balerdi, Garikoitz
    Xie, Changjian
    Malbon, Christopher L.
    Lineberger, W. Carl
    Yarkony, David R.
    Field, Robert W.
    Gibson, Stephen T.
    Ma, Jianyi
    Guo, Hua
    Neumark, Daniel M.
    SCIENCE, 2017, 358 (6361) : 336 - 339
  • [3] Alanate Anion, AlH4-: Photoelectron Spectrum and Computations
    Graham, J. D.
    Buytendyk, A. M.
    Zhang, X.
    Collins, E. L.
    Kiran, B.
    Gantefoer, G.
    Eichhorn, B. W.
    Gutsev, G. L.
    Behera, S.
    Jena, P.
    Bowen, K. H.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 118 (37): : 8158 - 8162
  • [4] Measurement and theoretical simulation of the HCCO- anion photoelectron spectrum
    Schäfer-Bung, B
    Engels, B
    Taylor, TR
    Neumark, DM
    Botschwina, P
    Peric, M
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (04): : 1777 - 1788
  • [5] Theoretical prediction of the ArO- anion ZEKE photoelectron spectrum
    Buchachenko, AA
    Szczesniak, MM
    Chalasinski, G
    CHEMICAL PHYSICS LETTERS, 2001, 347 (4-6) : 415 - 420
  • [6] First principles simulation of the lithium hydride anion photoelectron spectrum.
    Gellene, GI
    Chang, DT
    Reimann, K
    Surratt, G
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U242 - U242
  • [7] Assignment of Electronic Bands in the Photoelectron Spectrum of the VO2- Anion
    Kim, Jongjin B.
    Weichman, Marissa L.
    Neumark, Daniel M.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (12) : 5235 - 5237
  • [8] Photoelectron spectrum of a polycyclic aromatic nitrogen heterocyclic anion: quinoline-
    Buytendyk, Allyson M.
    Wang, Yi
    Graham, Jacob D.
    Kandalam, Anil K.
    Kiran, Boggavarapu
    Bowen, Kit H.
    MOLECULAR PHYSICS, 2015, 113 (15-16) : 2095 - 2098
  • [9] Theoretical calculations of photoelectron spectrum of (Au-CO2)- anion
    Watabe, Yuya
    Miyazaki, Takaaki
    Ozama, Eiki
    Takayanagi, Toshiyuki
    Suzuki, Yoshi-Ichi
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2018, 1140 : 56 - 62
  • [10] Theoretical Analysis of the Formylmethylene Anion Photoelectron Spectrum: Importance of Wolff Rearrangement Dynamics
    Miyazaki, Takaaki
    Watabe, Yuya
    Hashimoto, Yu
    Takahashi, Yukinobu
    Sugiura, Yutaro
    Saito, Kohei
    Takayanagi, Toshiyuki
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (47): : 9721 - 9728