Explaining Reinforcement Learning with Shapley Values

被引:0
|
作者
Beechey, Daniel [1 ]
Smith, Thomas M. S. [1 ]
Simsek, Ozgur [1 ]
机构
[1] Univ Bath, Dept Comp Sci, Bath, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
CLASSIFICATIONS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For reinforcement learning systems to be widely adopted, their users must understand and trust them. We present a theoretical analysis of explaining reinforcement learning using Shapley values, following a principled approach from game theory for identifying the contribution of individual players to the outcome of a cooperative game. We call this general framework Shapley Values for Explaining Reinforcement Learning (SVERL). Our analysis exposes the limitations of earlier uses of Shapley values in reinforcement learning. We then develop an approach that uses Shapley values to explain agent performance. In a variety of domains, SVERL produces meaningful explanations that match and supplement human intuition.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] ON THE SYMMETRICAL AND WEIGHTED SHAPLEY VALUES
    CHUN, Y
    INTERNATIONAL JOURNAL OF GAME THEORY, 1991, 20 (02) : 183 - 190
  • [42] Calculation of exact Shapley values for explaining support vector machine models using the radial basis function kernel
    Andrea Mastropietro
    Christian Feldmann
    Jürgen Bajorath
    Scientific Reports, 13 (1)
  • [43] Explainable Prediction of Acute Myocardial Infarction Using Machine Learning and Shapley Values
    Ibrahim, Lujain
    Mesinovic, Munib
    Yang, Kai-Wen
    Eid, Mohamad A.
    IEEE ACCESS, 2020, 8 : 210410 - 210417
  • [44] Calculation of exact Shapley values for explaining support vector machine models using the radial basis function kernel
    Mastropietro, Andrea
    Feldmann, Christian
    Bajorath, Juergen
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [45] Blending Shapley values for feature ranking in machine learning: an analysis on educational data
    Guleria P.
    Neural Computing and Applications, 2024, 36 (23) : 14093 - 14117
  • [46] Predicting Swarm Equatorial Plasma Bubbles via Machine Learning and Shapley Values
    Reddy, S. A.
    Forsyth, C.
    Aruliah, A.
    Smith, A.
    Bortnik, J.
    Aa, E.
    Kataria, D. O.
    Lewis, G.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2023, 128 (06)
  • [47] Integrating Shapley Values into Machine Learning Techniques for Enhanced Predictions of Hospital Admissions
    Feretzakis, Georgios
    Sakagianni, Aikaterini
    Anastasiou, Athanasios
    Kapogianni, Ioanna
    Bazakidou, Effrosyni
    Koufopoulos, Petros
    Koumpouros, Yiannis
    Koufopoulou, Christina
    Kaldis, Vasileios
    Verykios, Vassilios S.
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [48] Explaining deep learning-based activity schedule models using SHapley Additive exPlanations
    Koushik, Anil
    Manoj, M.
    Nezamuddin, N.
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2024,
  • [49] A machine learning research template for binary classification problems and shapley values integration
    Smith, Matthew
    Alvarez, Francisco
    SOFTWARE IMPACTS, 2021, 8
  • [50] Explaining Online Reinforcement Learning Decisions of Self-Adaptive Systems
    Feit, Felix
    Metzger, Andreas
    Pohl, Klaus
    2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS (ACSOS 2022), 2022, : 51 - 60