Explaining Reinforcement Learning with Shapley Values

被引:0
|
作者
Beechey, Daniel [1 ]
Smith, Thomas M. S. [1 ]
Simsek, Ozgur [1 ]
机构
[1] Univ Bath, Dept Comp Sci, Bath, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
CLASSIFICATIONS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For reinforcement learning systems to be widely adopted, their users must understand and trust them. We present a theoretical analysis of explaining reinforcement learning using Shapley values, following a principled approach from game theory for identifying the contribution of individual players to the outcome of a cooperative game. We call this general framework Shapley Values for Explaining Reinforcement Learning (SVERL). Our analysis exposes the limitations of earlier uses of Shapley values in reinforcement learning. We then develop an approach that uses Shapley values to explain agent performance. In a variety of domains, SVERL produces meaningful explanations that match and supplement human intuition.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Collective eXplainable AI: Explaining Cooperative Strategies and Agent Contribution in Multiagent Reinforcement Learning With Shapley Values
    Heuillet, Alexandre
    Couthouis, Fabien
    Diaz-Rodriguez, Natalia
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2022, 17 (01) : 59 - 71
  • [2] Explaining Preferences with Shapley Values
    Hu, Robert
    Chau, Siu Lun
    Huertas, Jaime Ferrando
    Sejdinovic, Dino
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [3] Explaining quantum circuits with Shapley values: towards explainable quantum machine learning
    Raoul Heese
    Thore Gerlach
    Sascha Mücke
    Sabine Müller
    Matthias Jakobs
    Nico Piatkowski
    Quantum Machine Intelligence, 2025, 7 (1)
  • [4] Explaining a series of models by propagating Shapley values
    Chen, Hugh
    Lundberg, Scott M.
    Lee, Su-In
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] Explaining a series of models by propagating Shapley values
    Hugh Chen
    Scott M. Lundberg
    Su-In Lee
    Nature Communications, 13
  • [6] Explaining a Machine-Learning Lane Change Model With Maximum Entropy Shapley Values
    Li, Meng
    Wang, Yulei
    Sun, Hengyang
    Cui, Zhihao
    Huang, Yanjun
    Chen, Hong
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (06): : 3620 - 3628
  • [7] Explaining Predictive Uncertainty with Information Theoretic Shapley Values
    Watson, David S.
    O'Hara, Joshua
    Tax, Niek
    Mudd, Richard
    Guy, Ido
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] Explaining dimensionality reduction results using Shapley values
    Marcilio-Jr, Wilson E.
    Eler, Danilo M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 178
  • [9] Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models
    Chau, Siu Lun
    Muandet, Krikamol
    Sejdinovic, Dino
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [10] Explaining multivariate molecular diagnostic tests via Shapley values
    Roder, Joanna
    Maguire, Laura
    Georgantas, Robert, III
    Roder, Heinrich
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)