PyLandslide: A Python']Python tool for landslide susceptibility mapping and uncertainty analysis

被引:0
|
作者
Basheer, Mohammed [1 ,2 ]
Oommen, Thomas [3 ]
机构
[1] Univ Toronto, Dept Civil & Mineral Engn, Toronto, ON, Canada
[2] Humboldt Univ, Albrecht Daniel Thaer Inst, Berlin, Germany
[3] Univ Mississippi, Dept Geol & Geol Engn, Oxford, MS 38677 USA
关键词
Landslides; Disaster risk Management; Investment Planning; Geographic Information Systems; Heavy Precipitation; Italy; LAND-USE; GIS; REGRESSION; MOUNTAINS; HAZARD;
D O I
10.1016/j.envsoft.2024.106055
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Mitigating the impacts of landslides and planning resilient infrastructure necessitates assessing the exposure to this hazard through, for example, susceptibility mapping involving the spatial integration of various contributing factors. Here, we introduce PyLandslide, an open-source Python tool that leverages machine learning and sensitivity analysis to quantify the weights of various contributing factors, estimate the associated uncertainties, and generate susceptibility maps. We apply PyLandslide to the case of rainfall-triggered landslides in Italy driven by historical precipitation data (1981-2023) and nine climate projections for the mid-century (2041-2050). Results highlight distance to roads as the most influential factor in determining landslide susceptibility in Italy, followed by slope. Our findings reveal an overall reduction in susceptibility in the mid-century compared to the historical period; however, the directional changes vary spatially. Uncertainty analysis should play a central role in decision-making on landslides, where weights are intricately linked to investments.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] LANDSLIDE ADVISOR: A PYTHON']PYTHON LIBRARY FOR LANDSLIDE PREDICTION AROUND POWER TRANSMISSION LINES
    Gerente, Jessica
    Atkinson Amorim, Joao Gustavo
    Gomes Junior, Francisco Caruso
    Providelo, Lucas Antonio
    Marchiori, Guilherme
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5578 - 5581
  • [12] Version [1.1]- [pyFDM: A python']python library for uncertainty decision analysis methods]
    Wieckowski, Jakub
    Salabun, Wojciech
    SOFTWAREX, 2024, 25
  • [13] PyTOPS: A Python']Python based tool for TOPSIS
    Yadav, Vinay
    Karmakar, Subhankar
    Kalbar, Pradip P.
    Dikshit, A. K.
    SOFTWAREX, 2019, 9 : 217 - 222
  • [14] Python']Python as a Federation Tool for GENESIS 3.0
    Cornelis, Hugo
    Rodriguez, Armando L.
    Coop, Allan D.
    Bower, James M.
    PLOS ONE, 2012, 7 (01):
  • [15] CharmFL: A Fault Localization Tool for Python']Python
    Sarhan, Qusay Idrees
    Szatmari, Attila
    Toth, Rajmond
    Beszedes, Arpad
    IEEE 21ST INTERNATIONAL WORKING CONFERENCE ON SOURCE CODE ANALYSIS AND MANIPULATION (SCAM 2021), 2021, : 114 - 119
  • [16] GOMap: A Python']Python-developed GIS opportunity mapping tool for renewable energy technologies
    Mcghee, Raheal
    SOFTWAREX, 2023, 23
  • [17] autoDIAS: a python']python tool for an automated distortion/interaction activation strain analysis
    Svatunek, Dennis
    Houk, Kendall N.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2019, 40 (28) : 2509 - 2515
  • [18] PyVecContour: A Python']Python toolkit for vectorized isosurface mapping
    Ma, Jinfeng
    Zheng, Hua
    Li, Ruonan
    Rao, Kaifeng
    Yang, Yanzheng
    Li, Weifeng
    SOFTWAREX, 2023, 21
  • [19] An Automated Python']Python Language-Based Tool for Creating Absence Samples in Groundwater Potential Mapping
    Rahmati, Omid
    Moghaddam, Davoud Davoudi
    Moosavi, Vahid
    Kalantari, Zahra
    Samadi, Mahmood
    Lee, Saro
    Dieu Tien Bui
    REMOTE SENSING, 2019, 11 (11)
  • [20] An Automated Code Update Tool For Python']Python Packages
    Navarro, Nacho
    Alamir, Salwa
    Babkin, Petr
    Shah, Sameena
    2023 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION, ICSME, 2023, : 536 - 540